
MSE 487 - Exam sheet 
 
Weeks 1 and 2: algebraic structures 
 
Proof by induction  

o For n0 ∈ ℕ, for a proposition P(n) (n ∈ ℕ ) to be true for all n ≥ n0, it is necessary and sufficient that:   
 - P(n0) is true 
 - For all n ≥ n0, if P(n) is true, then P(n+1) is also true.  
 

o Strong induction: It is equivalent to show that: if it is true for n0, and for all integers < n, then P(n) is also true.  
 
Set, permutation, Combinatorial 

o If a finite set E contains n elements (n ∈ ℕ ), n is also called the order or the cardinal, then the number of part, or sub-
ensembles of E, including the “empty” part and E itself, is 2n.  

o If a set E contains n elements (n ∈ ℕ ), the number of ways to arrange them is n!  
o 𝑛! = ∏ 𝑘 = 1 × 2 × 3 × … × (𝑛 − 2) × (𝑛 − 1) × 𝑛𝑛

𝑘=1        with            0! = 1 
o A permutation, or arrangement, of p elements (𝑝 ≤ 𝑛) of E is a sub-set of E with elements arranged in a certain way. 

The ordering is here important: a set of similar elements but arranged differently forms a different arrangement.  

o Number of arrangements of p elements among n: ∏ (𝑛 − 𝑘)𝑝−1
𝑘=0 =

𝑛!

(𝑛−𝑝)!
= 𝐴𝑛

𝑝  

 
o A combination is the number of ways of selecting p elements among n, without considering their permutation.  

The number of ways to select p elements among n, is: (
𝑛
𝑝) =

𝐴𝑛
𝑝

𝑝!
= 

𝑛!

𝑝!(𝑛−𝑝)!
 

 

• Pascal relation: (
𝑛 + 1
𝑝 + 1) = (

𝑛
𝑝 + 1) + (

𝑛
𝑝) 

• Newton binomial: ∀(𝑎, 𝑏) ∈ ℂ2,  ∀ 𝑛 ∈ ℕ:    (𝑎 + 𝑏)𝑛 = ∑ (
𝑛
𝑘

) 𝑎𝑘𝑏𝑛−𝑘𝑛
𝑘=0  

 
Euclidean division  

o Given two integers (a,b) ∈ ℤ2, with b ≠ 0, there exist unique integers q and r such that: a = bq + r and 0 ≤ r < |b|, 
o Given two integers (a,b) ∈ ℤ2, a divides b if there exists an integer q such that a = bq. 
o An equivalent definition is a divides b if and only if the remainder r of the Euclidean division is zero.  

 
o We consider {𝑥𝑘 ,  𝑘 ∈ ℕ 𝑎𝑛𝑑 1 ≤ 𝑘 ≤ 𝑛,  𝑎𝑛𝑑 𝑥𝑘 ∈ ℤ∗}.    

- The ensemble of the dividers of the 𝑥𝑘 admits a maximum, called the greatest common divider and defined as 
gcd(𝑥𝑘). 

- The ensemble of the multiples of the 𝑥𝑘 admits a minimum, called the lowest common multiple and is defined 
as lcm(𝑥𝑘) 

 
Prime numbers, co-primes 

o A prime number is a number greater than one that is only divided by 1 and itself. 
o Every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. 

For all integers n, there exists prime numbers pi and integers ni (1 ≤ 𝑖 ≤ 𝑘), such that  

𝑛 = ∏ 𝑝𝑖
𝑛𝑖

𝑘

𝑖=1

 

o Two integers a and b are mutually prime (or co-prime, relatively prime), if gcd(a,b) = 1. 
o This definition can be extended to n integers xi , which are called mutually prime if  gcd(x1,…,xn) = 1.  
o Theorem of Bézout:   

For n non zero integers xi, 𝑔𝑐𝑑(𝑥1, … , 𝑥𝑛) = 𝑑.  Then, ∃ (𝑑1, … , 𝑑𝑛) ∈ ℤ𝑛 such that  

∑ 𝑑𝑖𝑥𝑖

𝑛

𝑖=1

= 𝑑 

o Important corollary to Bézout’s theorem:  
      If n non zero integers xi are mutually prime, or co-prime, i.e. if 𝑔𝑐𝑑(𝑥1, … , 𝑥𝑛) = 1,  then ∃ (𝑑1, … , 𝑑𝑛) ∈ ℤ𝑛 such that: 

∑ 𝑑𝑖𝑥𝑖

𝑛

𝑖=1

= 1 

 
o Gauss Theorem:  ∀ (𝑎, 𝑏, 𝑐) ∈ (ℤ∗)3,  {𝑎|𝑏𝑐 & gcd(𝑎, 𝑏) = 1 } ⟹ 𝑎|𝑐 

 
o Euclid’s lemma: If a prime p divides the product ab of two integers a and b, then p must divide at least one of those 

integers a or b. (as can be seen by a direct application of Gauss theorem).  

https://en.wikipedia.org/wiki/Uniqueness_quantification


- ℚ  

o The ensemble of rational numbers is defined as the ensemble ℚ = {
𝑝

𝑞
,  (𝑝, 𝑞) ∈ ℤ × ℤ∗} 

o ℚ is dense in ℝ: ∀(𝑥, 𝑦) ∈ ℝ2,  ∃ 𝑧 ∈ ℚ such that 𝑥 < 𝑧 < 𝑦. 

o ∀𝑥 ∈ ℚ,  ∃! (𝑝, 𝑞) ∈ ℤ × ℕ∗ such that 𝑥 =
𝑝

𝑞
  & gcd (𝑝, 𝑞) = 1 (ie p and q are co-prime).  

-       ℝ  
o Absolute value: ∀𝑥 ∈ ℝ,  |𝑥| = (𝑥 𝑖𝑓 𝑥 ≥ 0,  − 𝑥 𝑖𝑓 𝑥 ≤ 0).   

∀(𝑥, 𝑦) ∈ ℝ2,  |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|, and ||𝑥| − |𝑦|| ≤ |𝑥 − 𝑦| 

o Inequality of Cauchy-Schwartz:  

(∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1

)

2

≤ (∑ 𝑥𝑖
2

𝑛

𝑖=1

) (∑ 𝑦𝑖
2

𝑛

𝑖=1

) 

 

o Inequality of Minkowsky: √∑ (𝑥𝑖+𝑦𝑖)2𝑛
𝑖=1 ≤ √∑ 𝑥𝑖

2𝑛
𝑖=1 + √∑ 𝑦𝑖

2𝑛
𝑖=1  

 
o Nth root: ∀(𝑦, 𝑛) ∈ ℝ+ × ℕ∗ ,  ∃! 𝑥 ∈ ℝ such that 𝑥𝑛 = 𝑦. 

 
o Root of a second-degree polynomial  

For (𝑎, 𝑏, 𝑐) ∈ ℝ3,  𝑎 ≠ 0 we consider the trinomial for 𝑥 ∈ ℝ, 𝑇(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and its discriminant ∆= 𝑏2 − 4𝑎𝑐: 
▪ If ∆< 0, ∀𝑥 ∈ ℝ, 𝑎𝑇(𝑥)>0 

▪ If ∆= 0,  T has one root −
𝑏

2𝑎
, and 𝑎𝑇(𝑥) ≥ 0 

▪ If ∆> 0, T has two roots 𝑥′ and 𝑥′′ with 𝑥′ =
−𝑏−√∆

2𝑎
 and 𝑥′′ =

−𝑏+√∆

2𝑎
 

- Polynomials: 
o Lagrange Polynomial: for a function in ℝ or ℂ, for a given set of n numbers (𝑎𝑘)1≤𝑘≤𝑛, there is a unique polynomial P 

such that ∀𝑘,  𝑓(𝑎𝑘) = P(𝑎𝑘).   

𝑃(𝑥) = ∑ 𝑓(𝑎𝑘)
∏ (𝑥 − 𝑎𝑗)𝑗≠𝑘

∏ (𝑎𝑘 − 𝑎𝑗)𝑗≠𝑘

𝑛

𝑘−1

 

o A polynomial of degree n in ℝ can have a maximum of n roots, and the polynomials (𝑋 − 𝛼)𝛽  are irreducible factors, 
very much like prime numbers for numbers.  

o A polynomial in ℝ is said split, if  ∃𝛼𝑖 ∈ ℝ,  𝛽𝑖 ∈ ℕ such that 𝑃(𝑋) = ∏ (𝑋 − 𝛼𝑖)𝛽𝑖
𝑖  

If 𝛽𝑖 > 1, the root is said degenerate. If deg(P) = n, then 𝑛 = ∑ 𝛽𝑖𝑖  
o Every polynomials in ℂ has at least one root.   Corollary: every polynomial in ℂ is split.  

 
Euclidean geometry 

o The following notation will be used:  
 

o The magnitude (or norm) of a vector:  ‖𝒂‖ = 
 

o Scalar (or dot) product: for two vectors in the orthonormal basis 𝒊, 𝒋, 𝒌, we have: 𝒂. 𝒃 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧 

𝒂. 𝒃 = ‖𝒂‖ × ‖𝒃‖cos (𝛼)  where 𝛼 is the angle between the two vectors.  
o The cross product of two vectors forming an angle 𝛼  is a vector perpendicular to these vectors, with the magnitude:  

‖𝒂 × 𝒃‖ = ‖𝒂‖ ‖𝒃‖ sin(𝛼) 
o In an orthonormal basis (i,j,k), the Cross product of two vectors 𝒂 and b is:   

 

o Line: Parametric equation of a line passing by two points A and B:  𝐿 = {𝑀 = (
𝑥
𝑦
𝑧

) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∃𝜆 ∈ ℝ 𝑨𝑴 = 𝜆𝑨𝑩} 

o Plane: 

▪ A plane is defined by 3 points 𝐴 = (

𝑥𝐴

𝑦𝐴

𝑧𝐴

), B = (

𝑥𝐵

𝑦𝐵

𝑧𝐵

) and C = (

𝑥𝐶

𝑦𝐶

𝑧𝐶

)  or a point A and a normal 𝒏 = (

𝑛𝑥

𝑛𝑦

𝑛𝑧

) 

▪ This can be expressed in a simple way as: 𝑃 = {𝑀 = (
𝑥
𝑦
𝑧

) ,  𝑨𝑴. 𝒏 = 0}  

▪ One can extract the linear equation: for (𝑎, 𝑏, 𝑐, 𝑑) ∈ ℝ4,  𝑃 = {𝑀 = (
𝑥
𝑦
𝑧

) ,  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 𝑑 = 0} 

▪ Angles 
o The angle between two vectors can be calculated from the dot or the cross products. 
o Angle between a line and a plane: Complementary of the angle between the line direction and the normal of the plan  
o Angle between two planes: Angle between their normals:  

o Volume formed by three vectors: 𝑉 = 𝑎⃗. (𝑏⃗⃗ × 𝑐) = 𝑏⃗⃗. (𝑐 × 𝑎⃗) = 𝑐. (𝑎⃗ × 𝑏⃗⃗) 



Week 3 : Complex Numbers 
o The form z = 𝑥 + 𝑖𝑦 constitutes the algebraic form of a complex number z. 
o 𝑥 is called the real part and written 𝑥 = 𝑅𝑒(𝑧), and 𝑦 is the Imaginary part with 𝑦 = 𝐼𝑚(𝑧). 
o For two complex numbers z and z’, Re(z+z’) = Re(z) + Re(z’) and Im(z+z’) = Im(z) + Im(z’) 

z = z’ if and only if Re(z) = Re(z’) and  Im(z) = Im(z’) 
o Conjugate: 𝑧∗ = 𝑥 − 𝑖𝑦.   Also denoted by 𝑧̅. 

o The modulus of a complex number  z = 𝑥 + 𝑖𝑦  is given by: |𝑧| = √𝑧𝑧∗ = √𝑥2 + 𝑦2 

o For (𝑧, 𝑧′) ∈ ℂ2, the multiplication proceeds as follow: 𝑧 × 𝑧′ = (𝑥 + 𝑖𝑦) × (𝑥′ + 𝑖𝑦′) = (𝑥𝑥′ − 𝑦𝑦′) + 𝑖(𝑥′𝑦 + 𝑥𝑦′) 

o The division: 
𝑧

𝑧′
=

𝑥+𝑖𝑦

𝑥′+𝑖𝑦′
=

(𝑥+𝑖𝑦)(𝑥′−𝑖𝑦′)

|𝑧′|2 =
𝑥𝑥′+𝑦𝑦′

𝑥′2+𝑦′2 + i
𝑥′𝑦−𝑥𝑦′

𝑥′2+𝑦′2  

o Polar form: 𝑧 = 𝑥 + 𝑖𝑦 if we call r the magnitude of the depicted vector, then : 𝑥 = 𝑟𝑐𝑜𝑠𝜃 ,  𝑦 = 𝑟𝑠𝑖𝑛𝜃  

One can write : z = 𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑟𝑠𝑖𝑛𝜃 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃), r is the modulus and θ is the argument. 𝑟 = √𝑥2 + 𝑦2  and 

tan𝜃 =
𝑦

𝑥
 

o Exponential form: z = 𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑟𝑠𝑖𝑛𝜃 = 𝑟𝑒𝑖𝜃  

o For z ∈ ℂ,  𝑧 = 𝑟𝑒𝑖𝜃 ,  𝑧∗ = 𝑟𝑒−𝑖𝜃 

o |𝑒𝑖𝜃| = 1 = √𝑥2 + 𝑦2, with 𝑥 = 𝑐𝑜𝑠𝜃 and y= 𝑠𝑖𝑛𝜃  

o cos(𝑥) =
𝑒𝑖𝑥+𝑒−𝑖𝑥

2
 𝑎𝑛𝑑 sin(𝑥) =

𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖
 

o Trigonometric formulae :  
 
 
 
 
 
 

 
o Roots:  

 
 
 
 
 
 

o Polynomials 

▪ Polynomial in ℂ of any degree are split, i.e. 𝛼𝑖 ,  𝛽𝑖 ∈ ℕ such that 𝑃(𝑋) = ∏ (𝑋 − 𝛼𝑖)𝛽𝑖
𝑖   

 
o Logarithmic 

▪ For (𝑥, 𝑦) ∈ ℝ2,  y = 𝑒𝑥 > 0. So 𝑥 = 𝑙𝑛𝑦 defined with y ∈ ℝ+
∗  

▪ One can define 𝑙𝑛 on negative numbers using complex numbers: ln(−5) = 2ln(𝑖) + ln(5) = 𝑖𝜋 + ln(5) ∈ ℂ 
 

 
 
Week 4 -6: Linear Algebra 

o Matrices : 
▪ For two matrices A (kxp) and B (pxn): (𝐴 + 𝐵)𝑖𝑗 = (𝐴)𝑖𝑗 + (𝐵)𝑖𝑗 

(𝜆𝐴)𝑖𝑗 = 𝜆(𝐴)𝑖𝑗 ,        𝜆 ∈ ℂ 

       
▪ Multiplication : 

 
▪ Multiplication is associative but not commutative.  

o In the same way that a function of a variable f(x) can be constructed through its Taylor series, functions f(M) of a squared 
matrix M can be defined through the corresponding Taylor series. Hence for the exponential:  

 
o Transpose Matrix: 

o  For 𝐴 = (𝑎𝑖𝑗) a kxn matrix, the transpose matrix of A is the nxk matrix: 𝐴𝑇 = (𝑎𝑗𝑖). 

o For two matrices A and B with the proper size: (𝐴𝑇)𝑇 = 𝐴 ; (𝐴 + 𝐵)𝑇 = 𝐴𝑇+𝐵𝑇; (𝛼𝐴)𝑇 = 𝛼𝐴𝑇 ;  (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇  
o A matrix A is symmetric if 𝐴 = 𝐴𝑇  and anti-symmetric if 𝐴 = −𝐴𝑇 .   
o The trace of a matrix 𝐴 = (𝑎𝑖𝑗) is the sum of the diagonal terms./ For two square matrices A and B, and 𝛼 a scalar:  

𝑡𝑟(𝐴 + 𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵); 𝑡𝑟(𝛼𝐴) = 𝛼𝑡𝑟(𝐴); 𝑡𝑟(𝐴) = 𝑡𝑟(𝐴𝑇); 𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴) 
o The trace is independent of the basis onto which the operator is defined !  

 

o ∈ℤ  

 



o Inverse Matrix: If A is a square matrix (real or complex), B is the inverse of A if AB = BA = I. I is the identity matrix nxn with 
diagonal coefficients equal to 1, and off-diagonal coefficients equal to 0.  
B is unique! It is also equivalently denoted by 𝐴−1. In finite dimensions, it is equivalent to say: 

o A is invertible 
o The equation Ax = b has a unique solution. 
o If A is a square matrix of order n, rank(A) = n.  
o The linear application 𝑥 → 𝐴𝑥 is injective 
o The linear application 𝑥 → 𝐴𝑥 is surjective  

 
Determinant :  

o For 𝐴 = (
𝑎 𝑏
𝑐 𝑑

), 𝑑𝑒𝑡(𝐴) = 𝑎𝑑 − 𝑏𝑐.  If 𝑑𝑒𝑡(𝐴) = 0,  it gives a relation between the two rows or columns that indicates 

if they are linearly dependent 
o Key result: A nxn matrix is invertible if and only if 𝑑𝑒𝑡(𝐴) ≠ 0 
o There are many ways to derive the determinant. A practical one is the Laplace formula:  
o Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of order n. Let [Aij ] be the submatrix of A obtained by deleting row i and column j. The 

minor-ij Mij and the cofactor-ij Cij are defined by 

𝑀𝑖𝑗 = 𝑑𝑒𝑡[𝐴𝑖𝑗],  𝐶𝑖𝑗 = (−1)𝑖+𝑗𝑀𝑖𝑗, and 𝑑𝑒𝑡(𝐴) = ∑ 𝑎𝑖𝑗𝐶𝑖𝑗
𝑛
𝑗=1  

o For two square matrices: 𝑑𝑒𝑡(𝐴𝐵) = 𝑑𝑒𝑡(𝐴) 𝑑𝑒 𝑡(𝐵) = 𝑑𝑒𝑡 (𝐵𝐴) 
o This is very important as it ensures that the determinant is independent of the basis, so the inversible property is a 

function of the linear transformation associated to A.  
 
Vector spaces :  

o A subspace of a vector space V is a subset of V that is also a vector space. To verify that a subset 
U of V is a subspace you must check that U contains the vector 0 (neutral for addition), and that 
U is closed under addition and scalar multiplication. 

o The span of a list of vectors (𝑣1, … , 𝑣𝑛) in V, denoted as span(𝑣1, … , 𝑣𝑛), is the set of all linear 
combinations of these vectors: 

span(𝑣1, … , 𝑣𝑛) = {𝑢 ∈ 𝑉,  ∃(𝑎1, … , 𝑎) ∈ ℂ𝑛,  𝑢 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛} 
o A vector space V is said to be finite dimensional if it is spanned by some list of vectors in V: 

∃ (𝑣1, … , 𝑣𝑛) ∈ 𝑉,  ∀𝑢 ∈ 𝑉, ∃(𝑎1, … , 𝑎) ∈ ℂ𝑛,  𝑢 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛  
 

o If V is not finite dimensional, it is infinite dimensional. In such case, no list of vectors from V can span V. 
 

o A basis of V is a list of vectors in V that both spans V and is linearly independent. 
o A list of vectors (𝑣1, … , 𝑣𝑛) is said to be linearly independent if the equation:     𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 = 0 

         has for solution ∀𝑖,  𝑎𝑖 = 0  ie: one cannot express one vector of the set as linear expression of the others.  
o A basis of V is a list of vectors in V that both spans V and is linearly independent: 
o The dimension of a finite dimensional vector space V is the length of the shortest list of vectors that span V.   
o All bases of a finite dimensional vector space have the same length.  
o Any list of linearly independent vectors of length n = dimV is a basis of V 
o There cannot be a list of n+1 linearly independent vectors in V. 

 
o Let U and V be vector spaces over K (ℂ 𝑜𝑟 ℝ). A function T : V → U is called a linear transformation if, for all u, v ∈ V and 

α ∈ K: 
o T(u + v) = T(u) + T(v) 
o T(αu) = αT(u) 

o If the image of T is in V, ie if T : V → V, T is called a linear operator.   
o To every linear operator T, one can associate a matrix that acts on the vectors of V (finite dimension). 

o The notions discussed on matrices above apply to operators:  
o A linear operator T : V → V is said to be injective if Tu = Tv, with u,v ∈ V, implies u = v. 
o T is injective if and only if null(T) = {0}, with the subspace:   
o T is surjective if range(T) = V 
o In infinite dimension, T is bijective if it is injective and surjective.  
o In finite dimension, T is bijective and has an inverse if it is injective or surjective, just like its associated matrix ! 
o dim(range(T)) = rank(T) 

o In finite dimension, it is equivalent to say: The columns (lines) of the associated matrix are linearly 
independent; the operator is injective; the operator is surjective; The matrix in invertible; det (𝐴) ≠ 0 

  
o Two operators will commute in terms of their composition, if their associated matrices commute with respect to the 

multiplication of matrices.  
o The commutator [·,·] of two operators X,Y is defined as [X,Y]≡ XY − YX. 
o Two operators X, Y commute if [X,Y] = 0. 



o The trace and determinant of operators are defined the same way as above, and do not depend on the basis chosen for 
the associated matrix.  

o Eigen values and eigen vectors of operators:  
o An eigen vector u for a linear operator T is a vector that satisfies 𝑇𝑢 = 𝜆𝑢. 𝜆 is called an eigen value.  
o For a given eigenvalue 𝜆, there maybe several linearly independent eigen vectors of T. We say that 𝜆 generates a 

sub-space of a given dimension > 1.  
     The eigenvalue is then said to be degenerate.  

o The set of eigenvalues of T is called the spectrum of T. 
o Set of eigenvectors of T corresponding to λ = null(T − λI).  
o The eigen values are found solving det(T − λI) = 0.  

 
o A matrix A is diagonalizable if it is similar to a diagonal matrix, i.e. there exist an invertible matrix P, and a diagonal matrix 

D, such that 𝑃−1𝐴𝑃 = 𝐷. 
o Equivalently, A is diagonalizable if there exist a basis of its eigen vectors.  
o The associated linear operator T is diagonalizable if there is a basis of the vectorial space V formed by the 

eigenvectors of T.  
o A matrix nxn with n distinct and non-zero eigenvalues is diagonalizable.  
o If the dimension of the sub-spaces of the eigen values of A (nxn) add up to n, then it is diagonalizable.  

 
o Let T be a linear operator, and assume λ1,...λn are distinct eigenvalues of T and u1,...un are corresponding nonzero eigenvectors. 

Then (u1,...un) are linearly independent. 
o Inner Product: an inner product on a vector space V over ℝ 𝑜𝑟 ℂ is a map from an ordered pair (𝑢, 𝑣) of vectors in V to a 

number ⟨𝑢|𝑣⟩ in ℝ 𝑜𝑟 ℂ. The axioms for ⟨𝑢|𝑣⟩ are inspired by the axioms for the dot product of vectors:  
1. ⟨𝑣|𝑣⟩ ≥ 0, for all vectors 𝑣 ∈ V. 
2. ⟨𝑣|𝑣⟩ = 0 if and only if 𝑣 = 0. 
3. ⟨𝑢|𝑣1 + 𝑣2⟩ = ⟨𝑢|𝑣1⟩+ ⟨𝑢|𝑣2⟩.  Additivity in the second entry. 
4. ⟨𝑢|𝛼𝑣⟩ = 𝛼 ⟨𝑢|𝑣⟩, 𝛼 ∈ ℂ. Homogeneity in the second entry. 
5. ⟨𝑢|𝑣⟩ = ⟨𝑣|𝑢⟩* . Conjugate exchange symmetry. 

o The norm of a vector is also noted: |𝑣|2 = ⟨𝑣|𝑣⟩ ≥ 0 
o Dirac notation: ket |𝑣⟩ is a vector; bra ⟨𝑣|is a linear operator acting on a vector via the dot product.  
o Two vectors are orthogonal if ⟨𝑢|𝑣⟩ = 0.  
o Schwartz inequality: |⟨𝑢|𝑣⟩| ≤ |𝑢||𝑣| 
o A list of vectors is said to be orthonormal if all vectors have norm one and are pairwise orthogonal. A set of orthonormal 

vectors are necessarily linearly independent.    
 
Hilbert Spaces 

o A Hilbert space H is a real or complex inner product space that is also a complete metric space with respect to the distance 
function induced by the inner product. Inner product space is simply a vectorial space with an inner product.  

o A complete metric is the property that every Cauchy sequence of H with respect to the metric converges in H.  
o We consider a linear operator T on a vector space V that has an inner product. The linear operator T† on V called the 

adjoint of T, is constructed as follow: for u,v vectors of V:   
o T† is a linear operator:  

o 〈𝑢, 𝑇𝑣〉 = 〈T†𝑢, 𝑣〉 
o For T and S two linear operators: (𝑆𝑇)† = 𝑇†𝑆†  
o The adjoint of the adjoint is the original operator: (S†)† = S  
o (𝑇†)𝑖𝑗 = (𝑇𝑗𝑖)

∗ : over an orthonormal basis, the adjoint matrix is the transpose and complex conjugate.   

o Self-adjoint (or Hermitian in finite dimension) operators are linear operators T for which   T = T†. 
o One can show that: T = T† if and only if ∀𝑣 ∈ 𝑉, 〈𝑣, 𝑇𝑣〉 ∈ ℝ 
o Two other very important results:  

o The eigenvalues of Hermitian operators are real; 
o Different eigenvalues of a Hermitian operator correspond to orthogonal eigenfunctions: 

 
o An operator U in a complex vector space V is said to be a unitary operator if it is surjective and does not change the 

magnitude of the vector it acts upon. 
o A more common definition: 𝑈†𝑈 = 𝑈𝑈† = 𝐼 
o Unitary operators preserve inner products in the following sense: 〈𝑈𝑢, 𝑈𝑣〉 = 〈𝑢, 𝑣〉  

 
o Spectral theorem (finite dimension): 

If A is a Hermitian operator on a Hilbert space V of finite dimension, then there exists an orthonormal basis of V consisting 
of eigenvectors of A. Each eigenvalue is real. 

  
o This is equivalent to say that A can be diagonalized; 



o It is also equivalent to the fact that the sub-spaces of the eigenvalues of V are orthogonal, and the sum of their 
dimension is equal to dim(V).  

o The spectral theorem actually applies to Normal operators, defined as operators for which [𝑇,T†] = 0.  This 
includes self-adjoint and unitary matrices. 

 
o Spectral theorem (infinite dimension): 

In infinite dimension, the problem is more complex and the theorem holds only in certain conditions (that are almost 
always met in QM). It applies to certain types of operators: Compact self-adjoint operators; Bounded self-adjoint 
operators. 
 

o Spectral decomposition: in finite dimension, a self-adjoint operator can be diagonalized, hence possess a set of 
orthonormal eigenvectors that form a basis. If 𝑎𝛼 are its eigenvalues, that can be degenerate, hence span a sub-space of 

dimension 𝑛𝛼 and eigenvectors |𝛼, 𝑟𝛼⟩, one can write: 𝐴̂ = ∑ ∑ 𝑎𝛼|𝛼, 𝑟𝛼⟩𝑛𝛼
𝑟𝛼=1𝛼 ⟨𝛼, 𝑟𝛼| 

o This is based on the concept of outer product which is an operator |𝜓⟩ ⟨𝜑|. For an orthogonal basis, 𝑃𝛼̂ =

∑ |𝛼, 𝑟𝛼⟩⟨𝛼, 𝑟𝛼|𝑛𝛼
𝑟𝛼=1  is a projector on the sub-space of 𝑎𝛼.  

o For an object in state |𝜓⟩,  the probability to find an eigen value 𝑎𝛼 of an observable 𝑨̂ is given by:  

𝑃(𝑎𝛼) = ⟨𝜓|𝑃𝛼̂|𝜓⟩ = ∑ |⟨𝛼, 𝑟𝛼|𝜓⟩|2𝑛𝛼
𝑟𝛼=1  , where 𝑛𝛼 is the dimension of the sub-space generated by 𝑎𝛼, and the |𝛼, 𝑟𝛼⟩ the   

associated orthonormal eigenvectors.  
 

o Commuting observables: 
o If two normal operators commute on a Hilbert space, there exists a basis of common eigenvectors.  
o This is quite powerful and is used for example in the quantum numbers of orbitals in the Hydrogen atom, or to 

prove the Bloch theorem.  
 
 
Week 7-9: Functions 
 

o Given two sets of real numbers, a domain (often referred to as the x-values, and interval I) and a co-domain (often 
referred to as the y-values), a real function assigns to each x-value a unique y-value. 

o Injective function: function f that maps distinct elements of its domain to distinct elements: f(x1) = f(x2) implies x1 = x2. 
o Surjective functions: a function f such that every element y can be mapped from element x so that f(x) = y. 
o Composition: if a function f is defined from I to X, and g is defined over X,  one can define ∀𝑥 ∈ 𝐼,   ℎ(𝑥) = 𝑔𝑜𝑓(𝑥).   
o 𝑓−1 is the inverse of 𝑓 and is defined such that 𝑓−1𝑜𝑓 = 𝑓𝑜𝑓−1 = 𝐼𝑑 (the identity function).  
o A function is even (odd)  if ∀𝑥 ∈ 𝐼,  𝑓(𝑥) = 𝑓(−𝑥) (𝑓(𝑥) = −𝑓(−𝑥)) 
o Periodicity: f is periodic of period T if ∀𝑥 ∈ 𝐼,  𝑓(𝑥 + 𝑇) = 𝑓(𝑥).   

Sequences 
o Functions are extension of the concept of sequences that can be seen as functions from the domain ℕ into ℝ or ℂ.   
o Examples: 𝑢𝑛 = 𝑢𝑛−1 + 𝑟 = 𝑢0 + 𝑟𝑛 (arithmetic sequence) ;       𝑢𝑛 = 𝑟𝑢𝑛−1 = 𝑢0𝑟𝑛 (geometric sequence) 
o A sequence converges towards a limit 𝑙 ∈ ℝ (𝑜𝑟 ℂ) if and only if:   ∀𝜀 > 0,  ∃ 𝑁 ∈ ℕ such that  (𝑛 ≥ 𝑁 ⇒ ⌈𝑢𝑛 − 𝑙⌉ ≤ 𝜀) 

o This limit is unique; 
o It is equivalent to say that (𝑢𝑛 − 𝑙) converges to 0. 

o A sequence tends to +∞  if and only if: ∀ 𝐴 ∈ ℝ+
∗ , ∃ 𝑁 ∈ ℕ such that ∀ 𝑛 ∈ ℕ,  (𝑛 ≥ 𝑁 ⇒ 𝑢𝑛 ≥ 𝐴) 

o A sequence tends to −∞  if and only if: ∀ 𝐵 ∈ ℝ−
∗ , ∃ 𝑁 ∈ ℕ such that ∀ 𝑛 ∈ ℕ,  (𝑛 ≥ 𝑁 ⇒ 𝑢𝑛 ≤ B) 

o A sequence (𝑣𝑛)𝑛∈ℕ diverges if it does not converge nor tend to ±∞ 
 
Other important definitions and results:  

o A sequence is increasing if : ∀ 𝑛 ∈ ℕ, 𝑢𝑛+1 ≥ 𝑢𝑛  
o A sequence is decreasing if : ∀ 𝑛 ∈ ℕ,  𝑢𝑛+1 ≤ 𝑢𝑛  
o If a sequence (𝑣𝑛)𝑛∈ℕ is increasing (decreasing) and has no upper bound (lower bound), then it diverges to +∞ (−∞). 

(you showed it in exercises week 1).  
o If a sequence (𝑣𝑛)𝑛∈ℕ is increasing (decreasing) and has an upper bound 𝑙 (lower bound), then it converges towards 𝑙. 
o Squeeze (or sandwich) theorem: If (an), (bn), and (cn) are three real-valued sequences satisfying an ≤ bn ≤ cn for all n, and 

if furthermore an→ℓ and cn→ℓ, then bn→ℓ.  
Functions:  

o A function is increasing if ∀(𝑥1, 𝑥2) ∈ 𝐼2 ,   𝑥1 ≥ 𝑥2 ⟹ 𝑓(𝑥1) ≥ 𝑓(𝑥2) 
o A function is decreasing if ∀(𝑥1, 𝑥2) ∈ 𝐼2,   𝑥1 ≥ 𝑥2 ⟹ 𝑓(𝑥1) ≤ 𝑓(𝑥2) 
o A function 𝑓: 𝐼 → ℝ with I including +∞ , admits 𝑙 for limit when 𝑥 goes to infinity if and only if 

∀𝜀 > 0,  ∃𝐴 > 0,  ∀𝑥 ∈ 𝐼,  (𝑥 ≥ 𝐴 ⟹ |𝑓(𝑥) − 𝑙| < 𝜀) 
o A function 𝑓: 𝐼 → ℝ with I including +∞ , admits +∞ for limit when 𝑥 goes to infinity if and only if 

∀𝐴 > 0,  ∃𝐴′ > 0,  ∀𝑥 ∈ 𝐼,  (𝑥 ≥ 𝐴′ ⟹ 𝑓(𝑥) ≥ 𝐴) 
o A function 𝑓: 𝐼 → ℝ (or other domain) admits 𝑙 for limit in a point 𝑎 ∈ 𝐼 if and only if  

                For all sequence (𝑢𝑛)𝑛∈ℕ such that lim
𝑛→∞

𝑢𝑛 = 𝑎  , lim
𝑛→∞

𝑓(𝑢𝑛) = 𝑙.   



o One can express this without sequences: ∀𝜀 > 0,  ∃𝛼 > 0,  ∀𝑥 ∈ 𝐼,  |𝑥 − 𝑎| < 𝛼 ⟹ |𝑓(𝑥) − 𝑙| < 𝜀 
o Divergence to +∞:  ∀𝐴 > 0,  ∃𝛼 > 0,  ∀𝑥 ∈ 𝐼,  |𝑥 − 𝑎| < 𝛼 ⟹ 𝑓(𝑥) ≥ 𝐴 
o Divergence to −∞:    ∀𝐵 < 0,  ∃𝛼 > 0,  ∀𝑥 ∈ 𝐼,  |𝑥 − 𝑎| < 𝛼 ⟹ 𝑓(𝑥) ≤ 𝐵  
o If f is increasing (decreasing) and has an upper bound (lower bound), then it converges. 
o If f is increasing (decreasing) and has no upper bound (lower bound), then it tends to +∞ (−∞). 

 
o 𝑓: 𝐼 → ℝ has a right limit 𝑙  at 𝑎 ∈ 𝐼 if: ∀𝜀 > 0,  ∃𝛼 > 0,  ∀𝑥 ∈ 𝐼,  0 < 𝑥 − 𝑎 ≤ 𝛼 ⟹ |𝑓(𝑥) − 𝑙| < 𝜀        

Notation: lim
𝑥→𝑎+

𝑓(𝑥) = 𝑙 

o 𝑓: 𝐼 → ℝ has a left limit 𝑙  at 𝑎 ∈ 𝐼 if:  ∀𝜀 > 0,  ∃𝛼 > 0,  ∀𝑥 ∈ 𝐼,  0 < 𝑎 − 𝑥 ≤ 𝛼 ⟹ |𝑓(𝑥) − 𝑙| < 𝜀      
 Notation: lim

𝑥→𝑎−
𝑓(𝑥) = 𝑙 

 
o For (𝜆, 𝑙, 𝑙′) ∈ ℂ3,  𝑓, 𝑔: 𝐼 → ℝ f,g admit 𝑙 and 𝑙′ as limit at a point 𝑎 ∈ 𝐼 respectively:   
o  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o If 𝑓 is complex, then:  
 
 
 
 
 

o 𝑓: 𝐼 → ℝ with 𝐼 ⊂ ℝ, is continuous at the point 𝑥0 ∈ 𝐼 if: ∀𝜀 > 0,  ∃𝛼 > 0,  ∀𝑥 ∈ 𝐼,  |𝑥 − 𝑥0| < 𝛼 ⟹ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀 
o It is equivalent to say that f is continuous at point 𝑥0 ∈ 𝐼 if and only if f has a right and left limit at 𝒙𝟎 and the limits are 

equal.  
o Definition with sequences: A function 𝑓: 𝐼 → ℝ (or other domain) admits 𝑙 for limit in a point 𝑎 ∈ 𝐼 if and only if : 

                For all sequence (𝑢𝑛)𝑛∈ℕ such that lim
𝑛→∞

𝑢𝑛 = 𝑎  , lim
𝑛→∞

𝑓(𝑢𝑛) = 𝑓(𝑎)  

o Important results: if f and g are two continuous functions over an interval I:  
▪ |𝑓| is continuous ; 𝑓 + 𝑔 is also continuous over I; 𝜆𝑓,  𝜆 ∈ ℝ 𝑜𝑟 ℂ, is continuous; 𝑓 × 𝑔 is continuous; If 𝑔 ≠

0 over I, 𝑓/𝑔 is continuous; If 𝑔 is continuous over 𝑓(𝐼), ℎ(𝑥) = 𝑔𝑜𝑓(𝑥) is continuous; 𝑓−1, if defined, is 
continuous over 𝑓(𝐼). 

▪ If f is complex , it is continuous if and only if its real and imaginary parts are. 
 

o A function 𝑓: 𝐼 → ℝ with 𝐼 ⊂ ℝ, is differentiable at 𝑥 ∈ 𝐼 if: 

∀𝜀 > 0,  ∃𝛼 > 0,  ∀ℎ ∈ 𝐼,  |ℎ| < 𝛼 ⟹ |
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
− 𝑙| < 𝜀,     𝑙 = lim

ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
= 𝑓′(𝑥) 

 
Differentiability 

o A function f as defined earlier can be right and / or left differentiable if  
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 admits a right and left limit respectively.  

o Corollary: f is differentiable at 𝑎 ∈ 𝐼 if it is right and left differentiable, and the values are equal.  
o If a function is differentiable at point a, it is continuous at a. The reverse is not true ! (i.e. continuity does not imply 

differentiability)! 
o Important immediate results:  

▪ f is increasing (decreasing) over a domain I if and only if ∀𝑥 ∈ 𝐼,  𝑓′(𝑥) > 0 (𝑓′(𝑥) < 0).  
▪ If 𝑓: ℝ → ℝ is monotonic over a segment [𝑎, 𝑏] ⊂ ℝ , it then takes all the values within 

[inf (𝑓(𝑎), 𝑓(𝑏)),  sup (𝑓(𝑎), 𝑓(𝑏)]. 
 
 
 

g is bounded around a 



o Operations on derivatives: 
 
 

 
 
 

o Common functions:  
▪ A power function is a function that can be represented in the form 𝑓(𝑥) = 𝑘𝑥𝛼 ,  where 𝑘 and 𝛼 are real numbers, it  

is a continuous functions and can be differentiated until the derivative is null:  ∀𝛼 ∈ ℝ,  𝑓′(𝑥) = 𝛼𝑘𝑥𝛼−1 
▪ Exponential functions : function of the form 𝑓:  ℝ (𝑜𝑟 ℂ) → ℝ (𝑜𝑟 ℂ)   𝑓(𝑥) = 𝑎𝑥  

o From the fundamental definition of the differentiability of a function, we can find the derivative of exponential functions, 
and find a number e for which (𝑒𝑥)′ = 𝑒𝑥 

o e is defined as: 𝑒 = lim
𝑛→∞

(1 +
1

𝑛
)

𝑛
 

 
o The Hôpital rule: f and g are two functions, differentiable over an interval I, not necessarily at c; 

o g’ is not zero around c (for all 𝑥 ≠ 𝑐) 
o We have : lim

𝑥→𝑐
𝑓(𝑥) = lim

𝑥→𝑐
𝑔(𝑥) = 0 𝑜𝑟 ± ∞ 

 

o lim
𝑥→𝑐

𝑓′(𝑥)

𝑔′(𝑥)
 exists and: lim

𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥→𝑐

𝑓′(𝑥)

𝑔′(𝑥)
 

 
o The rule also applies for 𝑥 → ∞  
o The Rolle theorem: if f is a function defined over [𝑎, 𝑏] ⊂ ℝ, continuous and differentiable, and if f(a) = f(b), then ∃𝑐 ∈

]𝑎, 𝑏[,  𝑓′(𝑐) = 0.   
o  
o Cauchy’s mean value theorem: If f, g are two functions defined over [𝑎, 𝑏] ⊂ ℝ, continuous over [𝑎, 𝑏] and differentiable                  

over ]𝑎, 𝑏[, then ∃𝑐 ∈ ]𝑎, 𝑏[,  such that:  
o  

(𝑓(𝑏) − 𝑓(𝑎))𝑔′(𝑐) = (𝑔(𝑏) − 𝑔(𝑎))𝑓′(𝑐) 

 
 

o Hyperbolic functions:  

▪ 𝑐𝑜𝑠ℎ(𝑥) =
𝑒𝑥+𝑒−𝑥

2
 

▪ sinh(𝑥) =
𝑒𝑥−𝑒−𝑥

2
 

▪ 𝑡𝑎𝑛ℎ(𝑥) =
sinh(x)

cosh (𝑥)
 

▪ 𝑐𝑜𝑠ℎ2(𝑥) − 𝑠𝑖𝑛ℎ2(𝑥) = 1 

▪ 
𝑑

𝑑𝑥
(𝑐𝑜𝑠ℎ−1(𝑥)) =

1

√𝑥2−1
 

 
 
 
 
 
 
 
 



o Common derivatives:  
 

 

 
 
Extremums:  

▪ For a function to have an extremum at a point 𝑥0, it is necessary that 𝑓′(𝑥0) = 0.  It is however not sufficient. It must 
also be such that 𝑓′′(𝑥0) > 0 (convex) or 𝑓′′(𝑥0) < 0 (concave). 

▪ Inflexion point:  𝑓′′(𝑥0) = 0, marking where the concavity of a function changes. We must also have  𝑓′′′(𝑥0) ≠ 0  
Taylor Series:  

▪ Reminder:  𝑓(𝑥 + ∆𝑥) = 𝑓(𝑥) + 𝑓′(𝑥)∆𝑥 + ∆𝑥ℎ(𝑥) with lim
∆𝑥→0

ℎ(𝑥 + ∆𝑥) = 0 

▪ Taylor-Lagrange: for a function at least n+1 times differentiable (𝑛 ∈ ℕ), defined over an interval [𝑎, 𝑏] ⊂ ℝ, (the 
(n+1)th derivative needs to exist only in ]𝑎, 𝑏[),   then ∃𝑐 ∈ ]𝑎, 𝑏[ such that:  

 



o Let’s consider the domain of definition of f, 𝐼 ⊂ ℝ , that includes 0, and a arbitrary point 𝑥 in this interval. We can re-write 
the Taylor Lagrange polynomial what is called the Maclaurin form (with 𝑐 ∈ ]0, 𝑥[):  

∀𝑥 ∈ 𝐼,  𝑓(𝑥) = ∑
𝑥𝑘

𝑘!
𝑓(𝑘)(0)

𝑛

𝑘=0

+
𝑥𝑛+1

(𝑛 + 1)!
𝑓(𝑛+1)(𝑐) 

                 𝑅𝑛(𝑥) =
𝑥𝑛+1

(𝑛+1)!
𝑓(𝑛+1)(𝑐) is called the remainder of the Taylor polynomial ∑

𝑥𝑘

𝑘!
𝑓(𝑘)(𝑥)𝑛

𝑘=0 .  

o This remainder is small, and hence the function is well approximated by the Taylor polynomial, in two situations:  
▪ Taylor Expansion : 𝑥 is close to 0, for all n, the polynomial is a local approximation of the function around 0. 

                         The approximation globally improves as the degree of the polynomial increases for small x.  
▪ Taylor Series : 𝑛 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒 (𝑛 → ∞), 𝑓or all 𝑥, the polynomial is a global approximation of the function over a certain 

domain where the series  ∑
𝑥𝑘

𝑘!
𝑓(𝑘)(𝑥)∞

𝑘=0  converges.  

o There are different tests that can assess the convergence of a series: Ratio test: one looks at the behavior of the ratio of 
two following sequence number in the series as n goes to infinity. 

 

▪ the ratio is : 
𝑎𝑛+1𝑥𝑛+1

𝑎𝑛𝑥𝑛  

o Taking the limit:  
 
 
 

o The series is absolutely convergent if |x| < R and divergent if |x| > R. Hence a power series is convergent in a definite 
interval (−R,R) and divergent outside this interval. 

o Other convergence tests exist like the Cauchy-Hadamar:  
1

𝑅
= lim

𝑛→∞
√|𝑎𝑛|𝑛

      

 
o Examples of Maclaurin series valid over ℝ :                                             Taylor expansion around 0 at the order n:  

  
 
 
 
 
 
 

Primitives and Integrals 
o Given F and f two functions continuous and differentiable over  𝐼 ⊂ ℝ, F is a primitive of f if : ∀𝑥 ∈ 𝐼,  𝐹′(𝑥) = 𝑓(𝑥)   
o If F is a primitive of f, ∀𝜆 ∈ ℝ 𝑜𝑟 ℂ,  𝐹 + 𝜆 is a primitive of f.  
o Fundamental theorem: F and f two functions continuous and differentiable over  [𝑎, 𝑏] ⊂ ℝ, F primitive of f. The area 

under the curve 𝑓(𝑥),  𝑥 ∈ [𝑎, 𝑏] is written:  

𝐹(𝑏) − 𝐹(𝑎) = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

o Let f be a continuous real-value function defined on a closed interval [a, b]. Let F be the function defined, for all x in [a, 

b], by 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
. Then F is uniformly continuous on [a, b] and differentiable on the open interval (a, b), and 

𝐹′(𝑥) = 𝑓(𝑥)  for all x in (a, b) so F is an antiderivative (or primitive) of f.  
o The form expressed above is an indefinite form, also written ∫ 𝑓(𝑥)𝑑𝑥. Definite forms is an integral over a defined 

interval that returns a number. 
o Every continuous function has an anti-derivative, actually an infinity of them shifted by a constant.  

o Integration by parts : ∫ 𝑢(𝑥)𝑣′(𝑥)𝑑𝑥
𝑏

𝑎
= [𝑢(𝑥)𝑣(𝑥)]𝑎

𝑏 − ∫ 𝑢′(𝑥)𝑣(𝑥)𝑑𝑥
𝑏

𝑎
 

o Substitution : ∫ 𝑓(𝑔(𝑥))𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑢)

𝑑𝑢

𝑔′

𝑔(𝑏)

𝑔(𝑎)
   with 𝑢 = 𝑔(𝑥) 



o Common primitives 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

o Calculation of Arc length : 𝑠 = ∫ √1 + (
𝑑𝑦

𝑑𝑥
)

2
𝑑𝑥 = ∫ √1 + 𝑓′(𝑥)2𝑑𝑥

𝑏

𝑎

𝑏

𝑎
 



Exact and Inexact differentials 
o Partial differentiation: Multi-variable functions will be studied usually by looking at how they vary when changing only 

one variable at a time:  
 

           
𝜕𝑓

𝜕𝑥
(𝑥0, 𝑦0) = lim

ℎ→0

𝑓(𝑥0+ℎ,𝑦0)−𝑓(𝑥0,𝑦0)

ℎ
 

 
 

o Higher order Partial differentiation : since partial derivatives of a function are also functions of several variables, they 
can be differentiated with respect to any variable. For a function of two variables:  

 
 

o Differentiability: a function f defined on an open set I of ℝ𝑛 ,f is differentiable in I if all its partial derivatives exist and are 
continuous.  

o Clairaut’s theorem: for a function f defined on an open set I of ℝ2 if all the partial derivatives of f exist and are continuous, 

then: 
𝜕2𝑓

𝜕𝑥𝜕𝑦
= 

𝜕2𝑓

𝜕𝑦𝜕𝑥
 

o Total differential: a differentiable function (in 2D) has a total differential defined as: 𝑑𝑓 = 
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 

o In some open domain of a space, a differential form 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 where P and Q are continuous two variable 

functions, is an exact differential if it is equal to the total differential of a differentiable function 𝑓: 𝑑𝑓 = 
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 

with  
𝜕𝑓

𝜕𝑥
= 𝑃(𝑥, 𝑦) and 

𝜕𝑓

𝜕𝑦
= 𝑄(𝑥, 𝑦) ,  in an orthogonal coordinate system. 

Partial derivative test: a differential form 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 is an exact differential if and only if 
𝜕𝑃

𝜕𝑦
=

𝜕𝑄

𝜕𝑥
.  

 
Changing the order of limits: For a function of two variables f(x,y), we can invert the order of limits if and only if:  

 
o Uniform convergence :  

 
 

Changing the order of limit and integral:  
If (𝑓𝑛)𝑛∈ℕ∗is a sequence of Riemann integrable functions defined on a compact interval I, (a close interval in ℝ for example) 
which uniformly converge with limit f, then f is Riemann integrable and its integral can be computed as the limit of the 

integrals of the 𝑓𝑛: ∫ 𝑓
𝑥∈𝐼

= lim
𝑛→∞

∫ 𝑓𝑛𝑥∈𝐼
 

 
Changing the order of integrals: 

▪ Fubini's theorem : one may switch the order of integration if the double integral yields a finite answer when the 
integrand is replaced by its absolute value. 

 
 
Weeks 9&10: Fourier and Laplace transforms 
 

o For 𝑥(𝑡) a periodic function of period T, and 𝜔0 =
2𝜋

𝑇
,  

 
o The (𝑎𝑘)𝑘∈ℤ are the Fourier coefficients and the series is called the Fourier series.  

o ∀𝑘,   𝑎𝑘 =
1

𝑇
∫ 𝑥(𝑡)𝑒−𝑗𝑘𝜔0𝑡𝑇

0
𝑑𝑡 

o One can show that all T-periodic functions (and so in particular for regular continuous functions we handle in engineering 
most of the time), the expression of  Fourier series exist, and converges towards the original function uniformly.  
 

o For real functions, one often uses the relation:  
 



o Parseval equality: ∑ |𝑎𝑘|2 =
1

𝑇
∫ |𝑥(𝑡)|2𝑇

0
𝑑𝑡+∞

−∞  

If a function f has all its Fourier coefficient equal to zero, the function is zero.  
o For a function f that is wholly or piece-wise continuous and integrable (that vanishes at infinity), or in other words that is 

integrable, in particular:  The following integral form exist and is called the Fourier transform:  
 

𝐹(𝜔) =
1

2𝜋
∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞
    and we have   𝑓(𝑡) = ∫ 𝐹(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞
 

 

o Fourier transform of the derivative of f : ℱ(𝑓′)(𝜔) =
1

2𝜋
∫ 𝑓′(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 = 𝑗𝜔ℱ(𝑓)(𝜔)

+∞

−∞
  

o For a multi-variable function, it is possible to apply the Fourier transform to one variable only: for a function  c(x,t), 
we can apply the Fourier transform to the space variable x, leaving the time variable t unchanged:  

ℱ𝑥(𝑐(𝑥, 𝑡)) = 𝑐̂(𝜔, 𝑡) =
1

2𝜋
∫ 𝑐(𝑥, 𝑡)𝑒−𝑗𝜔𝑥𝑑𝑥

+∞

−∞

 

o For a function 𝑓: ℝ3 → ℝ, within an orthonormal basis: 

                ℱ(𝑓)(𝝃) = ∫ 𝑓(𝒓)𝑒−𝑗𝒓.𝝃𝑑3𝑟
ℝ3  Where 𝒓. 𝝃 is the dot product between two vectors. 

 
o The Dirac delta function loosely defined is actually an example of a distribution, it is defined by its integration properties.  

 
 
 
 

o The Fourier transform of the delta function is: ℱ(𝛿)(𝜔) =
1

2𝜋
∫ 𝛿(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 =

1

2𝜋
𝑒−𝑗𝜔×0 =

1

2𝜋
,  ∀𝜔

+∞

−∞
 

o From the inverse theorem: 𝛿(𝑡) = ∫
1

2𝜋
𝑒+𝑗𝜔𝑡𝑑𝜔 =

1

2𝜋
∫ 𝑒+𝑗𝜔𝑡𝑑𝜔 = ℱ(𝑓 = 1)

+∞

−∞

+∞

−∞
 

 

o For the function 𝑓(𝑡) = 𝑒𝑗𝜔0𝑡: 

ℱ(𝑒𝑗𝜔0𝑡) =
1

2𝜋
∫ 𝑒−𝑗(𝜔−𝜔0)𝑡𝑑𝑡 =

1

2𝜋
2𝜋𝛿

+∞

−∞

(𝜔 − 𝜔0) = 𝛿(𝜔 − 𝜔0) 

o Fourier transform of a Gaussian f(t): 
 
 
 
Laplace Transforms 

o The Laplace transform is defined in two ways:  

o Unilateral: ℒ[𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = 𝑓(𝑠)̅̅ ̅̅ ̅̅∞

0
    (causal system that exists for t>0). 

o Bilateral:    ℒ[𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = 𝑓(𝑠)̅̅ ̅̅ ̅̅∞

−∞
 

o The Laplace transform is said to be defined in the s-domain, where s is a complex number.  
o Properties of the Fourier (X(j𝜔)) and Laplace (X(s)) transforms of a function x(t):  

 

 
 

o Be careful however, for the unilateral Laplace transform, a limit at the 0 boundary must be considered:  
 

ℒ[𝑓′(𝑡)] = ∫ 𝑒−𝑠𝑡𝑓′(𝑡)𝑑𝑡 = [𝑒−𝑠𝑡𝑓(𝑡)]
∞
0

− (−𝑠)
∞

0

∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

 

ℒ[𝑓′(𝑡)] = 𝑠ℒ[𝑓(𝑡)] − 𝑓(0) 
 
 

Bilateral Laplace Fourier



o Convolution: operation on two functions that reflect how the shape of one is modified by the other:  

𝑓 ∗ 𝑔(𝑡) = ∫ 𝑓(𝜏
+∞

−∞

)𝑔(𝑡 − 𝜏)𝑑𝜏 = ∫ 𝑓(𝑡 − 𝜏
+∞

−∞

)𝑔(𝜏)𝑑𝜏 

 
o Laplace transform of common functions :  

 

                  
 

 
 
 
Week 10&11: Differential Equations 

o The general form of a second order linear ODE is:  𝑎2𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 𝑓(𝑥) 
o The solution is the sum of a particular solution of the non-homogeneous function, and general solution of the 

homogeneous equation.  
o In the general case for the homogeneous function:  

 
 

o The general form of a first order ODE is as follow: 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑓(𝑥) 

o The general solution of the non-homogeneous function above is: 𝑦((𝑥) =
1

𝐼(𝑥)
∫

𝐼(𝑥)

𝑝(𝑥)
𝑓(𝑥)𝑑𝑥 where 𝐼(𝑥) = 𝑒

∫
𝑞(𝑥)
𝑝(𝑥)

𝑑𝑥
 

 



Partial differential Equations  
o The general form of a PDE is :  

 
 

o A linear equation is one in which the equation and any boundary or initial conditions do not include any product 
of the dependent variables or their derivatives;  

o Semi-linear equation: coefficients of the highest derivative are functions of the independent variables only. 
o Quasilinear equation: the coefficients of the higher order terms are functions of merely lower-order derivatives 

of the dependent variables. 
o The superposition principle does not apply to non-linear equations. 

 
Week 12-14 : Probability and Statistics  

 
o The set of functions square integrable over an interval (i.e.∫|𝑓(𝑥)|2 exists and is finite), often called ℒ2, is an Hilbert space, 

with the inner product:  
⟨𝑓, 𝑔⟩ = ∫ 𝑓∗(𝑥)𝑔(𝑥)𝑑𝑥 and ‖𝑓‖2 = ⟨𝑓, 𝑓⟩ = ∫|𝑓(𝑥)|2𝑑𝑥 

o The common operators discussed in wave mechanics are self-adjoint (position, momentum, most Hamiltonians).   
Probability :  

o Consider performing N times an experiment that returns events in a set 𝛺 .We can consider an event 𝛼, which happens 

𝑁𝛼 times. The empirical frequency is given by 𝑓𝛼(𝑁) =
𝑁𝛼

𝑁
 

When N becomes large and the experiments are done independently from each other (they don’t influence each other), 
𝑓𝛼(𝑁) converges to a well defined and finite limit called the event probability: 

𝑃(𝛼) = lim
𝑁→∞

𝑓𝛼(𝑁) ≥ 0 

o From the definition, it is straightforward that (it is what defines a probability function):  
o  𝑃(𝛺) = 1 and 𝑃(∅) = 0. 
o If (𝐴𝑖) is a family of events that are not overlapping (i.e. ∀𝑖 ≠ 𝑗, 𝐴𝑖 ∩ 𝐴𝑗 = ∅):  𝑃(⋃ 𝐴𝑖𝑖 ) = ∑ 𝑃𝑖 (𝐴𝑖) 

o Normalization: ∑ 𝑝𝑖 = 1 
o For two independent events A and B, 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵) 
o Random variables: If one considers a game of drawing balls, with the probabilities 𝑝𝑖 ,  to which is associated not just an 

event (a ball with i on it), but a number, such as an amount of money won 𝑥𝑖.  𝑥𝑖 is a variable associated with  
a random event, it is a called a random variable.  

o The set {𝑥𝑖 , 𝑝𝑖} defines the law for the random variable 𝑥𝑖. In this case, it is a discrete law.  
o  Continuous random variables: a continuous random variable 𝑥 can take values in an interval [𝑎, 𝑏],   the 

probability density 𝑝(𝑥) ≥ 0 defines the law of the random variable: the probability to find a value between 

𝑥 & 𝑥 + 𝑑𝑥 is 𝑝(𝑥)𝑑𝑥. Normalization: ∫ 𝑝(𝑥)𝑑𝑥
𝑏

𝑎
= 1 

 
o Conditional probability:  

For two events A and B, the probability that the event B occurs, knowing event A, is given by: 𝑃(𝐵 𝐴⁄ ) =
𝑃(𝐵∩𝐴)

𝑃(𝐴)
  

If A and B are independent, knowing A should not affect the probability of B, and we see that 𝑃(𝐵 𝐴⁄ ) = 𝑃(𝐵). 
o Average:  

We consider a random variable 𝑥, with outcome values (𝑥𝛼 , 𝑝𝛼) if discrete, and if continuous, 𝑥 ∈ [𝑎, 𝑏] with a probability 
density 𝑝(𝑥).  A function 𝑓(𝑥) is also a random variable. We can define its average:  

o  ∑ 𝑓(𝛼  𝑥𝛼) 𝑝𝛼  if discrete; 

o ∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝑥
𝑏

𝑎
 if continuous. 

o In particular, the average for the random variable x is given by:   ⟨𝑥⟩ = ∫ 𝑥𝑝(𝑥)𝑑𝑥
𝑏

𝑎
  

 
o Standard deviation:  

The standard deviation of the random variable is defined as: (∆𝑥)2 = 𝜎2 = ⟨(𝑥 − ⟨𝑥⟩)2⟩ 
▪ ∆𝑥 (𝜎) is called standard deviation, (∆𝑥)2 (𝜎2) is called variance.  
▪ We also have: 𝜎2 = ⟨𝑥2⟩ − ⟨𝑥⟩2  

 
o The binomial distribution is a discrete probability distribution of the number of successes in a sequence of n independent 

experiments, each with a probability of success p or failure 1 − p.  
▪ For a single trial, the binomial distribution is a Bernoulli distribution 

▪ For n trials, the probability of having a certain sequence of outcomes with k successes is:  𝑝𝑘 (1 − 𝑝)𝑛−𝑘 
▪ If we associate a random variable  for each trial Xk that is 1 for success, and 0 for failure, we can also define the 

random variable X that is the sum of the variable of each trial:  X = X1 + … + Xn ,  
▪ The probability to have k successes is P(X = k), which is also the number of configurations that returns X = k.  This 

is called the Binomial distribution of parameters n and p: 𝑃(𝑋 = 𝑘) = (
𝑛
𝑘

) 𝑝𝑘 (1 − 𝑝)𝑛−𝑘  

     



Statistical Physics : 

o Consider a system of Hamiltonian 𝐻 with eigenvectors |𝜓𝑛⟩. An observable 𝑂̂ with eigenvalues 𝑜𝛼  and eigenvectors |𝛼⟩, 

will have outcomes 𝑜𝛼  of probability |⟨𝛼|𝜓𝑛⟩|2 .   The average measure will be: ⟨𝜓𝑛|𝑂̂|𝜓𝑛⟩ = ∑ 𝑜𝛼|⟨𝛼|𝜓𝑛⟩|2
𝛼  

o The statistical description of the macroscopic system attributes a certain probability 𝑝𝑛  of having the system in the state 

|𝜓𝑛⟩.We hence have a two-level statistics: ⟨𝑂̂⟩ = ∑ 𝑝𝑛⟨𝜓𝑛|𝑂̂|𝜓𝑛⟩𝑛  

One level is linked to the quantum physics that governs nature at the microscopic level. The second one arises from an 
impossibility to know exactly the Hamiltonian and other parameters of a macroscopic system of 1023 particles: a true 
statistical approach. 
 

Fundamental postulate of statistical physics:  
For a closed system of fixed energy E (microcanonical ensemble), the microstates are equiprobable.  

o If 𝒲(𝐸) is the number of eigenstates of an Hamiltonian 𝐻 for which 𝐸 ≤ 𝐸𝑛 ≤  𝐸 + 𝛿𝐸, we can assign the probability for 

each eigenstate to be: 𝑝𝑛 =
1

𝒲(𝐸)
 

o One can construct a new operator called density operator 𝐷̂, as: 𝐷̂ = ∑ 𝑝𝑛|𝜓𝑛⟩⟨𝜓𝑛|𝑛  

o 𝐷̂ is Hermitian, positive and Tr(𝐷̂) = 1 since the probabilities are normalized. We have: ⟨𝑂̂⟩ = Tr(𝐷̂𝑂̂) 

o 𝑝𝑛  can be described as the temporal average of |⟨𝜓𝑛|𝜓(𝑡)⟩|2,  i.e. the measure of the overlap of the real wave function 
of the system, and the eigenstate |𝜓𝑛⟩. 
 

o The concept of entropy in thermodynamics is linked to the number of accessible microstates : 𝑆 = 𝑘𝑙𝑛(𝒲(𝐸)) 
Where 𝑘 is the Boltzmann constant 𝑘 = 1.380658 × 10−23 𝐽. 𝐾−1 

o If we consider two isolated systems of energies 𝐸1 and 𝐸2 brought in contact. The total energy 𝐸 = 𝐸1 + 𝐸2 is conserved 
but 𝐸1 and 𝐸2can vary.  

o The probability to have the system 1 at energy 𝐸1 is: 𝑝(𝐸1) =
𝒲1(𝐸1)𝒲2(𝐸−𝐸1)

∑ 𝒲1(𝐸1
′)𝒲2(𝐸−𝐸1

′)
𝐸1

′
  

o This probability is peaked for   
𝜕𝑆1(𝐸1)

𝜕𝐸1
)

𝐸1=𝐸1
𝑒𝑞

=
𝜕𝑆2(𝐸−𝐸1)

𝜕𝐸1
)

𝐸2=𝐸−𝐸1
𝑒𝑞

 , where 𝐸1
𝑒𝑞 is the energy of system 1 at 

equilibrium. We can then define:  
1

𝑇
≡

𝜕𝑆

𝜕𝐸
 

 
o For a grand canonical ensemble, the probability of finding the small system 1 in one micro-state of energy 𝐸1  is 

𝑝 =
𝒲2(𝐸−𝐸1)

∑ 𝒲1(𝐸1
′)𝒲2(𝐸−𝐸1

′)
𝐸1

′
, which can be rewritten as: 𝑝 =

1

𝑍
𝑒

−
𝐸1

𝑘𝑇2  with 𝑍 = ∑ 𝑒
−

𝐸1
(𝑛)

𝑘𝑇2𝑛  the partition function.  

o A grand canonical ensemble will allow not only an exchange of energy for a small system with a thermostat, but also an 
exchange of matter (atoms, molecules, particles etc…) 

o The probability to have a microstate of energy E1 with N1 particles is: 𝑝 =
𝒲2(𝐸−𝐸1 , 𝑁−𝑁1)

∑ 𝒲1(𝐸1
′ ,𝑁1

′)𝒲2(𝐸−𝐸1
′ ,𝑁−𝑁1

′)
𝐸1

′ ,𝑁1
′

 

o With the definition of the differential of multiple variables, the entropy being an exact differential, we can do a very similar 

development as before and obtain a relationship for the temperature and for the chemical potential: 𝜇 = −𝑇
𝜕𝑆

𝜕𝑁
 

o We then obtain:  𝑝𝑛 =
1

𝑍𝐺
𝑒−𝛽𝐸𝑛+𝛼𝑁𝑛     with   𝛼 = 𝛽𝜇   and   𝑍𝐺 = ∑ 𝑒−𝛽𝐸𝑛+𝛼𝑁𝑛 = ∑ 𝑒𝛼𝑁𝑍𝑁(𝛽)∞

𝑁=0𝑛  

 
 


