MSE 487 - Exam sheet

Weeks 1 and 2: algebraic structures

Proof by induction

o

o

For ng € N, for a proposition P(n) (n € N ) to be true for all n > ny, it is necessary and sufficient that:
- P(no) is true
- For all n = ny, if P(n) is true, then P(n+1) is also true.

Strong induction: It is equivalent to show that: if it is true for ng, and for all integers < n, then P(n) is also true.

Set, permutation, Combinatorial

o

If a finite set E contains n elements (n € N ), nis also called the order or the cardinal, then the number of part, or sub-
ensembles of E, including the “empty” part and E itself, is 2".

If a set E contains n elements (n € N ), the number of ways to arrange them is n!
nl=[lre1k=1%X2%Xx3Xx..Xx(n—2)Xx(n—1)xXxn with 0'=1

A permutation, or arrangement, of p elements (p < n) of E is a sub-set of E with elements arranged in a certain way.

The ordering is here important: a set of similar elements but arranged differently forms a different arrangement.
n! _ AP
(n—p)t = M

Number of arrangements of p elements among n: ]—Ii;é(n —k) =

A combination is the number of ways of selecting p elements among n, without considering their permutation.
n) _ Aﬁ . on
p/ " p T pn-p)

The number of ways to select p elements among n, is: (

+  Pascal relation: (;i 1) = (p :l- 1) + (Z)

*  Newton binomial: ¥(a,b) € C2, VnEN: (a+b)" =Y}, (Z) akpnk

Euclidean division

O
@)
@)

Given two integers (a,b) € Z2, with b # 0, there exist unique integers g and r such that: a =bg +rand 0<r< |b|,
Given two integers (a,b) € Z2, a divides b if there exists an integer g such that a = bq.
An equivalent definition is a divides b if and only if the remainder r of the Euclidean division is zero.

We consider {x;, k E Nand 1 < k < n, and x; € Z*}.
- The ensemble of the dividers of the x; admits a maximum, called the greatest common divider and defined as
ged(xy).
- The ensemble of the multiples of the x; admits a minimum, called the lowest common multiple and is defined
as lem(xy)

Prime numbers, co-primes

O
)

O

A prime number is a number greater than one that is only divided by 1 and itself.
Every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors.
For all integers n, there exists prime numbers p; and integers n; (1 < i < k), such that

k
— nj
n=1 |p
i=1

Two integers a and b are mutually prime (or co-prime, relatively prime), if gcd(a,b) = 1.

This definition can be extended to n integers x;, which are called mutually prime if gcd(x,,...,x,) = 1.
Theorem of Bézout:

For n non zero integers x;, gcd (xy, ..., X,) = d. Then, 3 (dy, ..., d,) € Z™ such that

n
Z dixl- =d
=1
Important corollary to Bézout’s theorem:
If n non zero integers x; are mutually prime, or co-prime, i.e. if gcd (x4, ..., x,) = 1, then 3 (d, ..., d,,) € Z" such that:

n
Z dix,: =1
i=1
Gauss Theorem: V (a, b, c) € (Z*)3, {albc &gcd(a,b) =1} = alc

Euclid’s lemma: If a prime p divides the product ab of two integers a and b, then p must divide at least one of those
integers a or b. (as can be seen by a direct application of Gauss theorem).


https://en.wikipedia.org/wiki/Uniqueness_quantification

- Q
o The ensemble of rational numbers is defined as the ensemble Q = {S, (p,q) EZ X Z*}
Qisdensein R:V(x,y) ER% 3z € Qsuchthatx <z < y.
Vx €Q, 3! (p,q) €Z X N*such that x = % & ged (p,q) = 1 (ie p and g are co-prime).
- R
o Absolutevalue:Vx €ER, |x| = (xif x =0, —xif x <0).
V(x,y) € R |x +y| < |x| +yl, and ||x| = |yI| < |x =yl

o Inequality of Cauchy-Schwartz:
2

(2 =)

i=1 i=

o Inequality of Minkowsky: /Y, (x;+y)? < /2, %2 + /2L, v
o Nthroot: V(y,n) € R, X N*, 3'x € Rsuch that x™ = y.

o Root of a second-degree polynomial
For (a, b,c) € R3, a # 0 we consider the trinomial for x € R, T(x) = ax? + bx + c and its discriminant A= b? — 4ac:
» IfA<O0,Vx €R,aT(x)>0

= |fA= 0, T has one root —%, andaT(x) =0

-b—/A w _ —b+VA
and x"’ =

= |fA> 0, T has two roots x" and x"’ with x' = ”

- Polynomials:

o Lagrange Polynomial: for a function in R or C, for a given set of n numbers (ay ) <k<n, there is a unique polynomial P
such that Vk, f(a,) = P(ay)-

AN [je(x — @)
P(x) = ;f(ak) e

o A polynomial of degree n in R can have a maximum of n roots, and the polynomials (X — a)ﬁ are irreducible factors,
very much like prime numbers for numbers.

o Apolynomial in R is said split, if 3a; € R, f; € N such that P(X) = [[;(X — ;)P
If 5; > 1, the root is said degenerate. If deg(P) =n, thenn =Y, 5;

o Every polynomials in C has at least one root. Corollary: every polynomial in C is split.

Euclidean geometry e
o The following notation will be used: ¢ = | %»
a-

o The magnitude (or norm) of a vector: |lall = /a2 +a,2 +a,2

o Scalar (or dot) product: for two vectors in the orthonormal basis i, j, k, we have: a.b = a, b, + a, b, + a,b,
a.b = ||a|| X ||b]|cos (@) where a is the angle between the two vectors.
o The cross product of two vectors forming an angle a is a vector perpendicular to these vectors, with the magnitude:
lla x b|| = |lall [|b]| sin(a)
o Inan orthonormal basis (i,j,k), the Cross product of two vectors a and b is:

X
o Line: Parametric equation of a line passing by two points Aand B: L = {M = (y) such that 31 € R AM = AAB}
z
o Plane:
X4 Xp Xc Ny
= Aplaneis defined by 3 points A = <}’A>, B = (J’B) and C = <}’C> or a point Aand anormaln = (ny>
Zy Zp Zc ny
v
=  This can be expressed in a simple way as: P = {M = (y), AM.n = 0}
z v
*  One can extract the linear equation: for (a,b,c,d) € R*, P = {M = (y), ax+by+cz—d= 0}
z

Angles

The angle between two vectors can be calculated from the dot or the cross products.

Angle between a line and a plane: Complementary of the angle between the line direction and the normal of the plan
Angle between two planes: Angle between their normals:

Volume formed by three vectors: V = @. (b x &) = b. (¢ x @) = &.(d x b)

O O O O



Week 3 : Complex Numbers
o Theform z = x + iy constitutes the algebraic form of a complex number z.
o xis called the real part and written x = Re(z), and y is the Imaginary part with y = Im(z).
o For two complex numbers z and z’, Re(z+2’) = Re(z) + Re(z’) and Im(z+2’) = Im(z) + Im(Z’)
z=_2"if and only if Re(z) = Re(z’) and Im(z) = Im(zZ’)

o Conjugate: z* = x — iy. Also denoted by Z.

o The modulus of a complex number z = x + iy is given by: |z]| = +/zz* = \/x? + y?

o For(z,z") € C?, the multiplication proceeds as follow: z X z' = (x + iy) X (x’ +iy") = (xx' —yy") +i(x'y + xy")
o The division: 2 = XY _ GHNGZly) _ xxayyr y yxy—xyr

21 x'+iyr |z1|2 x12+y12 x12+y12
o Polarform: z = x + iy if we call r the magnitude of the depicted vector, then : x = rcosf , y = rsinf

One can write : z = rcosf + irsinf = r(cos@ + isind), r is the modulus and 0 is the argument. r = \/x? + y? and

tang =2
x .

o Exponential form: z = rcosf + irsinf = re'?

o ForzeC z=re? z*=re i
|ei9| =1=/x%2+y?, withx = cosf and y= sinf

ix+ —ix i ix_ ,—ix

o cos(x) =2 2e and sin(x) =< 2;

o Trigonometric formulae :
sin(a + 3) = sina cos 3 + cosa sin 3
cos(a+ ) = cosa cos B — sina sin 3
sin(av — ) = sina cos 3 — cos v sin 3
cos(ax — 3) = cosa cos 3 + sina sin 3

o Roots: -

cosa +jsina)” = [cos(a + 2mk) +jsin (o +27k)]" - a 2 (k2
( J ) [cos( mk)+jsin k)] m:,\,/;C()S_+_£k —}—JSII]——{--—”/\’
= cos(na +2mnk)+jsin(na + 2w nk) S L
where k = 0,%1,42,43,--- whee l =0l =k, e
o Polynomials
= Polynomial in C of any degree are split, i.e. @;, B; € N such that P(X) = [1;(X — a;)F

o Logarithmic
*  For(x,¥) ER? y=e*>0.S0 x = Iny defined withy € R,
=  One can define In on negative numbers using complex numbers: In(—5) = 2In(i) + In(5) = ir + In(5) € C

Week 4 -6: Linear Algebra
o Matrices :
*  For two matrices A (kxp) and B (pxn): (A + B);; = (A);; + (B);j
(A4);; = A(A)ij, 4€C

P
= Multiplication: (AB);; = ai1b1j + aioboj + -+ - + ayby; + - -+ + aipby; = E airby;
=1
=  Multiplication is associative but not commutative.
o Inthe same way that a function of a variable f(x) can be constructed through its Taylor series, functions f(M) of a squared

matrix M can be defined through the corresponding Taylor series. Hence for the exponential:
M2 o0 Mn
pr(_ﬂ[):l—i—M%—T—i----:Z

n=>0

n!

o Transpose Matrix:
o  For A = (a;;) a kxn matrix, the transpose matrix of A is the nxk matrix: AT = (a;).
o Fortwo matrices A and B with the proper size: (AT)T = A; (A+ B)T = AT+BT; (aA)" = aA”; (AB)T = BTAT
A matrix A is symmetric if A = AT and anti-symmetricif A = —AT.
The trace of a matrix A = (a;;) is the sum of the diagonal terms./ For two square matrices A and B, and « a scalar:
tr(4 + B) = tr(4) + tr(B); tr(ad) = atr(A); tr(4) = tr(47); tr(AB) = tr(BA)
o The trace is independent of the basis onto which the operator is defined !

o O



o

Inverse Matrix: If A is a square matrix (real or complex), B is the inverse of A if AB = BA = 1. | is the identity matrix nxn with
diagonal coefficients equal to 1, and off-diagonal coefficients equal to 0.
B is unique! It is also equivalently denoted by A™2. In finite dimensions, it is equivalent to say:
o Aisinvertible
The equation Ax = b has a unique solution.
If Ais a square matrix of order n, rank(A) = n.
The linear application x — Ax is injective
The linear application x — Ax is surjective

O O O O

Determinant :

O

o

For A = (Z Z

if they are linearly dependent

Key result: A nxn matrix is invertible if and only if det(A) # 0

There are many ways to derive the determinant. A practical one is the Laplace formula:

Let A = (a;;) be a square matrix of order n. Let [A;; ] be the submatrix of A obtained by deleting row i and column j. The
minor-ij Mjj and the cofactor-ij Cj are defined by

Mij = det[Ai]'], CU = (—1)i+jML'j, and det(A) = Z?:l aijCij

For two square matrices: det(AB) = det(A) de t(B) = det (BA)

This is very important as it ensures that the determinant is independent of the basis, so the inversible property is a
function of the linear transformation associated to A.

), det(A) = ad — bc. If det(A) = 0, it gives a relation between the two rows or columns that indicates

Vector spaces :

o

O O O O O

A subspace of a vector space V is a subset of V that is also a vector space. To verify that a subset (A t=4;

U of Vis a subspace you must check that U contains the vector O (neutral for addition), and that (4 p)-1 — =141

U is closed under addition and scalar multiplication. 3 R

The span of a list of vectors (vy, ..., V) in V, denoted as span(vy, ..., V), is the set of all linear (Am) = =(A7)"

combinations of these vectors: (@A)~t = 14-1;
span(vq, ..., v,) = {u €V, A(ay,...,a) €EC*, u = a;v; + -+ a,v,}

ATH=Y = 7 4=INT
A vector space V is said to be finite dimensional if it is spanned by some list of vectors in V: (4%) (AT )

o) €V, VueV,3(ay, ...,a) €ECY, u=a,v; + -+ a,v,

If V is not finite dimensional, it is infinite dimensional. In such case, no list of vectors from V can span V.

A basis of V is a list of vectors in V that both spans V and is linearly independent.

o Alist of vectors (v, ..., V) is said to be linearly independent if the equation: a,v; + -+ a,v, =0

has for solution Vi, a; = 0 ie: one cannot express one vector of the set as linear expression of the others.

A basis of V is a list of vectors in V that both spans V and is linearly independent:
The dimension of a finite dimensional vector space V is the length of the shortest list of vectors that span V.
All bases of a finite dimensional vector space have the same length.
Any list of linearly independent vectors of length n = dimV is a basis of V
There cannot be a list of n+1 linearly independent vectors in V.

Let U and V be vector spaces over K (C or R). A function T: V = U is called a linear transformation if, for all u, v € V and
a € K:
o T(u+v)=T(u)+T(v)
o T(owu)=aT(u)
o Iftheimage of TisinV,ieif T:V =V, Tis called a linear operator.
o To every linear operator T, one can associate a matrix that acts on the vectors of V (finite dimension).
The notions discussed on matrices above apply to operators:
o Alinear operator T:V - Vs said to be injective if Tu = Tv, with u,v € V, implies u = v.
Tis injective if and only if null(T) = {0}, with the subspace:
T is surjective if range(T) =V
In finite dimension, T is bijective and has an inverse if it is injective or surjective, just like its associated matrix !
dim(range(T)) = rank(T)
o In finite dimension, it is equivalent to say: The columns (lines) of the associated matrix are linearly
independent; the operator is injective; the operator is surjective; The matrix in invertible; det (4) # 0

O O O O O
=3
5
=0
=
=
(0]
=
3
)
=3
v,
o
>
_‘
&
=)
=
o
.
<
(0]
=
—
*
3
(0]
o
=
<
()
[
>
o
(%]
c
=.
)
o
.
<
o

Two operators will commute in terms of their composition, if their associated matrices commute with respect to the
multiplication of matrices.

The commutator [-,-] of two operators XY is defined as [X,Y]= XY - YX.

Two operators X, Y commute if [X,Y] = 0.



o

o

o

The trace and determinant of operators are defined the same way as above, and do not depend on the basis chosen for
the associated matrix.
Eigen values and eigen vectors of operators:
o An eigen vector u for a linear operator T is a vector that satisfies Tu = Au. 1 is called an eigen value.
o For a given eigenvalue A, there maybe several linearly independent eigen vectors of T. We say that A generates a
sub-space of a given dimension > 1.
The eigenvalue is then said to be degenerate.
o The set of eigenvalues of T is called the spectrum of T.
o Set of eigenvectors of T corresponding to A = null(T - Al).
o The eigen values are found solving det(T - Al) = 0.

A matrix A is diagonalizable if it is similar to a diagonal matrix, i.e. there exist an invertible matrix P, and a diagonal matrix
D, such that P~1AP = D.
o Equivalently, A is diagonalizable if there exist a basis of its eigen vectors.
o The associated linear operator T is diagonalizable if there is a basis of the vectorial space V formed by the
eigenvectors of T.
o A matrix nxn with n distinct and non-zero eigenvalues is diagonalizable.
o If the dimension of the sub-spaces of the eigen values of A (nxn) add up to n, then it is diagonalizable.

Let T be a linear operator, and assume A4,...A, are distinct eigenvalues of T and uj,...u, are corresponding nonzero eigenvectors.

Then (uy,...u,) are linearly independent.

Inner Product: an inner product on a vector space V over R or C is a map from an ordered pair (u, v) of vectors in V to a

number (u|v) in R or C. The axioms for (u|v) are inspired by the axioms for the dot product of vectors:

o O O O O

1. (v|v) 20, for all vectors v € V.

2.{v|v) = 0ifand onlyif v = 0.

3. (ulv; + vy) = (u|vy )+ (u|v,). Additivity in the second entry.

4. (ulav) = a (u|v), a € C. Homogeneity in the second entry.

5.{u|v) = (v|u)* . Conjugate exchange symmetry.

The norm of a vector is also noted: |v|? = (v|v) >0

Dirac notation: ket |v) is a vector; bra (v|is a linear operator acting on a vector via the dot product.
Two vectors are orthogonal if (u|v) = 0.

Schwartz inequality: |[(u|v)| < |u]|v|

A list of vectors is said to be orthonormal if all vectors have norm one and are pairwise orthogonal. A set of orthonormal
vectors are necessarily linearly independent.

Hilbert Spaces

o

O

A Hilbert space H is a real or complex inner product space that is also a complete metric space with respect to the distance
function induced by the inner product. Inner product space is simply a vectorial space with an inner product.
A complete metric is the property that every Cauchy sequence of H with respect to the metric converges in H.
We consider a linear operator T on a vector space V that has an inner product. The linear operator T" on V called the
adjoint of T, is constructed as follow: for u,v vectors of V:

o T'isalinear operator:

o (uTv)=(Tty v)

o ForTandS two linear operators: (ST)T = Ttst

o The adjoint of the adjoint is the original operator: (S")" =S

o (TT)ij = (T};)" : over an orthonormal basis, the adjoint matrix is the transpose and complex conjugate.
Self-adjoint (or Hermitian in finite dimension) operators are linear operators T for which T=T".
One can show that: T=T"ifand onlyif Vv € V, (v, Tv) € R
Two other very important results:

o The eigenvalues of Hermitian operators are real;

o Different eigenvalues of a Hermitian operator correspond to orthogonal eigenfunctions:

An operator U in a complex vector space V is said to be a unitary operator if it is surjective and does not change the
magnitude of the vector it acts upon.

A more common definition: UTU = UUt =1

Unitary operators preserve inner products in the following sense: (Uu, Uv) = (u, v)

Spectral theorem (finite dimension):
If Ais a Hermitian operator on a Hilbert space V of finite dimension, then there exists an orthonormal basis of V consisting

of eigenvectors of A. Each eigenvalue is real.

o This is equivalent to say that A can be diagonalized;



o ltis also equivalent to the fact that the sub-spaces of the eigenvalues of V are orthogonal, and the sum of their
dimension is equal to dim(V).

o The spectral theorem actually applies to Normal operators, defined as operators for which [T,7] = 0. This
includes self-adjoint and unitary matrices.

Spectral theorem (infinite dimension):

In infinite dimension, the problem is more complex and the theorem holds only in certain conditions (that are almost
always met in QM). It applies to certain types of operators: Compact self-adjoint operators; Bounded self-adjoint
operators.

Spectral decomposition: in finite dimension, a self-adjoint operator can be diagonalized, hence possess a set of
orthonormal eigenvectors that form a basis. If a, are its eigenvalues, that can be degenerate, hence span a sub-space of
dimension n, and eigenvectors |, 1, ), one can write: A = ¥, ng‘f:l agla, ) {a, 1y

This is based on the concept of outer product which is an operator [){@|. For an orthogonal basis, P, =
ngzlla, 1)@, 1, | is a projector on the sub-space of a,.

For an object in state |), the probability to find an eigen value a, of an observable 4 is given by:

P(ay) = (Y|P, |Y) = Zf;zl {a, T, [)|? , where n, is the dimension of the sub-space generated by a,, and the |, 7, ) the
associated orthonormal eigenvectors.

Commuting observables:
o If two normal operators commute on a Hilbert space, there exists a basis of common eigenvectors.
o This is quite powerful and is used for example in the quantum numbers of orbitals in the Hydrogen atom, or to
prove the Bloch theorem.

Week 7-9: Functions

o Given two sets of real numbers, a domain (often referred to as the x-values, and interval /) and a co-domain (often
referred to as the y-values), a real function assigns to each x-value a unique y-value.

o Injective function: function f that maps distinct elements of its domain to distinct elements: f(x1) = f(xz) implies x; = x,.

o Surjective functions: a function f such that every element y can be mapped from element x so that f(x) = y.

o Composition: if a function f is defined from I to X, and g is defined over X, one can define Vx € I, h(x) = gof (x).

o f~listheinverse of f and is defined such that f~tof = fof~! = I, (the identity function).

o Afunctionis even (odd) ifVx €I, f(x) = f(—x) (f(x) = —f(—x))

o Periodicity: fis periodic of period Tif Vx €I, f(x +T) = f(x).

Sequences

o Functions are extension of the concept of sequences that can be seen as functions from the domain N into R or C.

o Examples:u, = u,_; + r = u, + rn (arithmetic sequence);  u, = ru,_; = uyr" (geometric sequence)

o Asequence converges towards a limit [ € R (or C) ifand only if: Ve >0, 3N € Nsuchthat (n =N = [u, —[] <¢)
o This limit is unique;
o ltis equivalent to say that (u,, — [) converges to 0.

o Asequence tendsto +o ifandonlyif: VA € R},3N € NsuchthatVvneN, (n =N = u, = 4)

o Asequence tendsto —oo ifandonlyif: VB € R:,3 N € NsuchthatVvn €N, (n =N = u, <B)
o Asequence (v,),ey diverges if it does not converge nor tend to + o

Other important definitions and results:

o Asequenceisincreasingif:Vn € N,u,,; =u,

o Asequenceisdecreasingif:YVn €N, u,,; <u,

o Ifasequence (V,)ney is increasing (decreasing) and has no upper bound (lower bound), then it diverges to +co (—oo).
(you showed it in exercises week 1).

o Ifasequence (V,)ney is increasing (decreasing) and has an upper bound [ (lower bound), then it converges towards (.

o Squeeze (or sandwich) theorem: If (a,), (bn), and (c,) are three real-valued sequences satisfying a,< b, < ¢, for all n, and
if furthermore a,~>%2 and c,>%, then b,>%.

Functions:

o Afunctionis increasing if V(xq,x,) € I3, x; = x, = f(x;1) = f(xy)

o Afunction is decreasing if V(x1,x,) € I, x; = x, = f(x1) < f(x3)

o Afunction f:I - R with / including +oc0 , admits [ for limit when x goes to infinity if and only if

Ve>0,3A>0,Vxel, x=2A=|f(x) -1l <¢)
o Afunction f:I - R with / including +oc0 , admits +oo for limit when x goes to infinity if and only if
VA>0,34">0,vxel, (x=A4 = f(x) = A)
o Afunction f:I = R (or other domain) admits [ for limit in a point a € [ if and only if

For all sequence (U, )ney Such that lim u, = a , lim f(u,) =L
n-—-oo n—-oo
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If £ is complex, then:

f(x) =@l

f(x) f)()(:} | fx)] —> 0

X—a

flx) —>1
X—a =>f(x)+g(x)—>f+”
g(;) J— x—a

X—d

flx) —= [ = Af(x) — Al

X—a

/ 1 — C, (a,B) € R?

(Ré f)(x)
(Im f)(x) —> B.
xX-—»da

f(x) —7 a+ip
X *

fx)—0

xX—a

One can express this without sequences: Ve >0, 3a >0, Vx €, [x—a| <a = |f(x) -l <&
Divergenceto +o0: VA >0,3a >0, Vx€El, |[x—a|<a=f(x) = A
Divergenceto —oo: VB <0,3a>0,Vx€l, |[x—a|<a= f(x)<B
If fis increasing (decreasing) and has an upper bound (lower bound), then it converges.

If fis increasing (decreasing) and has no upper bound (lower bound), then it tends to +co (—c0).

f:I > Rhasarightlimitl ata€lif:Vve>0,3a>0,Vxe€l,0<x—a<a=|f(x)-I|<e
Notation: lim+f(x) =1
x—a

fil > Rhasaleftlimitl ata €lif: Ve>0,3a>0,Vxel,0<a—-x<a=|f(x)—l|<e
Notation: lim f(x) =1
x—a

For (A,1,1") € C3, f,g:1 —» R fgadmitland I’ as limit at a point a € I respectively:

= f(x)g(x) —> 0

gis bounded around a X—>a

fx) —>1

X—a
gx) — U’

xX—a

gx) —> I
X—a

I'#0
fx) —>1
X—a

gx)y— I’
XxX—a

I"#0

Important results: if fand g are two continuous functions over an interval I:

= f(x)glx) —> I

X—a

I |
gx) x—a l'

/() !

—_— .
g(x) x—a l'

fil - Rwith I c R, is continuous at the point x, € [if: Ve > 0,3a >0, Vx €, |[x — x| < a = |f(x) — f(xo)| < &
It is equivalent to say that f is continuous at point x, € I if and only if f has a right and left limit at x, and the limits are
equal.
Definition with sequences: A function f:I = R (or other domain) admits [ for limit in a point a € [ if and only if :
For all sequence (u,,),en Such that rlll_r& u,=a, 7!1,1—>rl;10 fuy) = f(a)

= |f| is continuous; f + g is also continuous over I; Af, A € R or C, is continuous; f X g is continuous; If g #
0 over |, f/g is continuous; If g is continuous over f(I), h(x) = gof (x) is continuous; f~1, if defined, is

continuous over f(I).

= |ffis complex, it is continuous if and only if its real and imaginary parts are.

A function f: 1 - R with I C R, is differentiable at x € [ if:
feH-f@

Ve>0,3a>0,Vhel |h<a=

Differentiability

o

@)
)

A function f as defined earlier can be right and / or left differentiable if !

Corollary: f is differentiable at a € I if it is right and left differentiable, and the values are equal.

If a function is differentiable at point a, it is continuous at a. The reverse is not true ! (i.e. continuity does not imply
differentiability)!

Important immediate results:

<g [=Ilim
h-0

(x+h)—f (x)
h

f(x+h)-f(x)
O

admits a right and left limit respectively.

» fisincreasing (decreasing) over a domain /if and only if Vx € I, f'(x) > 0 (f'(x) < 0).
= If fiR—> R is monotonic over a segment [a,b] C R, it

[inf (f (@), f (b)), sup (f(a), f(b)].

then takes all the values within



o Operations on derivatives:

General rules Function Derivative
y=r(x) y'=f'(x)

1. Constant factor v=cf(x) Yy =cf'(x)

2. Sum (algebraic) rule y=u(x)+v(x) Y =u'(x)+'(x)

3. Product rule y=u(x)v(x) y=u'(x)v(x)+u(x)v'(x)

. u(x) w (x)v(x)—ulx)v'(x)

4. Quotient rule y = () y = 2(7)2

5. Chain rule v=flg(x) y' = %g’(x)

6. Inverse functions y=7r - (x) V= ﬁ = ;’%u
ie.x=f(y)

Common functions:
» A power function is a function that can be represented in the form f(x) = kx%, where #and « are real numbers, it
is a continuous functions and can be differentiated until the derivative is null: Ya € R, f'(x) = akx®*™!
»  Exponential functions : function of the form f: R (or C) » R (or C) f(x) = a*
From the fundamental definition of the differentiability of a function, we can find the derivative of exponential functions,
and find a number e for which (e¢*)' = e*
eis defined as: e = lim (1 + l)n
n—oo n
The Hopital rule: f and g are two functions, differentiable over an interval I, not necessarily at c;
o g’ isnotzeroaround c (forall x # ¢)
o Wehave:limf(x) =limg(x) =0o0r + o
X—C X—C

o 1imZY exists and: lim L2 = ljm 222
x—c g7 (x) x-cg(x)  x-cg(x)

The rule also applies for x = o
The Rolle theorem: if f is a function defined over [a, b] € R, continuous and differentiable, and if f(a) = f(b), then 3c €

la,b[, f'(c) = 0.

Cauchy’s mean value theorem: If f, g are two functions defined over [a, b] c R, continuous over [a, b] and differentiable
over |a, b[, then 3¢ € ]a, b[, such that:

(f) = f(@)g' () = (9(b) — g(@))f'(c)

Hyperbolic functions:

x -X
*  cosh(x) = %

X_p—X
= sinh(x) = %
+tanh() = S0

*  cosh?(x) —sinh?(x) = 1
. %(cosh‘l(x)) = 1_

Vx2-1




o Common derivatives:

Derivatives Function Derivative
of fundamenthl functions yv=f(x) ¥ = f'(x)
1. Constant factor ¥y = constant y' =0
2. Power function y=x" y =nx"1
3. Trigonometric functions y =sinx ¥ =cosx
Y =cosXx ¥ = —sinx
! 1 2
y =tanx = 5 =1+tan* x
Cos= X
! -1 2
y =cotx y=— =—1—cot“x
sin” x
oo S o1 ! 1
4. Inverse trigonometric functions y=sin ' x V= —
V1—x2
1 ! 1
y=cos 'X V=
V1-x2
y=tan"lx y = !
1+x2
y=cot lx Yy =— i
1+4x2
Derivatives Function Derivative
of fundamental functions y=f(x) yli=f"(x)
5. Exponential function y=e" y' =e*
s g ;1
Logarithmic function y=Inx Y= =)
6. Hyperbolic trigonometric functions y = sinhx y' = coshx
y = coshx y' = sinhx
’ 1 2
y = tanhx y'= 5— = 1 —tanh” x
cosh” x
/ 1 p)
y =cothx y'= —=—=1-coth"x
sinh“ x
7. Inverse hyperbolic y =sinh~ ! x Y= I
trigonometric functions Vi+x2
1
-1 !
y=cosh™ ' x y = (x>1)
Vx2-1
1
—tanh~ ! x = x| <1
y Y=1— =<1
y =coth ' x y=- . (lx| >1)
x2—1

Extremums:
*  For afunction to have an extremum at a point x,, it is necessary that f'(x,) = 0. Itis however not sufficient. It must
also be such that f"'(x,) > 0 (convex) or " (x,) < 0 (concave).
» Inflexion point: f''(x,) = 0, marking where the concavity of a function changes. We must also have f""(x,) # 0
Taylor Series:
»  Reminder: f(x+ Ax) = f(x) + f'(x)Ax + Axh(x) with Alirllo h(x+Ax) =0

» Taylor-Lagrange: for a function at least n+1 times differentiable (n € N), defined over an interval [a, b] C R, (the
(n+1)th derivative needs to exist only in Ja, b[), then 3c € ]a, b[ such that:

1) = £@ + - o) (@) + L= pra) 4.4 L= oo gy o =)

2 nl mrr ! ")



o Let’s consider the domain of definition of f, I c R, that includes 0, and a arbitrary point x in this interval. We can re-write
the Taylor Lagrange polynomial what is called the I\/Iaclaurin form (with c €10, x[):
vx €l f(x) = Z &) 0) + (+1) (¢
Fw =Y X ) o +1),f ©
R,(x) = (n+1)'f(”+1) (¢) is called the remainder of the Taylor polynomial }}}_ —|f(k) ().
o This remainder is small, and hence the function is well approximated by the Taylor polynomial, in two situations:
= Taylor Expansion : x is close to 0, for all n, the polynomial is a local approximation of the function around 0.
The approximation globally improves as the degree of the polynomial increases for small x.
»  Taylor Series : n is large (n = ), for all x, the polynomial is a global approximation of the function over a certain
k
domain where the series Z,f’:O’;—!f(k) (x) converges.
o There are different tests that can assess the convergence of a series: Ratio test: one looks at the behavior of the ratio of
two following sequence number in the series as n goes to infinity.
do Faik Fas it Flsn” P ldn B 4 @y L e
n+1
= theratiois : “XH—
anx
o Taking the limit:
. a
lim dn+1 x| = * where R = lim -
R—=reo | dp R n=ee [ dp41
o The series is absolutely convergent if |x| < R and divergent if x| > R. Hence a power series is convergent in a definite
interval (-R,R) and divergent outside this interval.
o Other convergence tests exist like the Cauchy-Hadamar: % = lim % |a,|
n—oo
o Examples of Maclaurin series valid over R : Taylor expansion around 0 at the order n:
12 ;E" 1‘2" IZ J.n
cos(r)—l—?+F+ A (=1)" (2n)!+.“ e = 147+ 7 E IR F +(,(.r")
I.’S 1‘5 1.211+l 3 5 2p+1
sin(@) =z — o + o = o+ (Z1) o + g = e T~ ek (=1) T + o(rir?
3! ’o. _ (2n+1)! N 30 + 51 + ( ) (2I’+l)! ( )
(2) - e + (-1)" o + 2 4 P
arctan(z) == — — + — — ... - [ e I B By
3 5 2n+1 cosT = 1_7+_|+' e )p |+0(J.-I+l)
( +1£+EL+ +13 (271*1) 2n+1 i Z "1. 2 )
e 23 5 2.4...(2n) m+1 . T3 T3 rirtl i
a3 o sinhz = 'r+'$_'+_‘:7+”.+2—l_'+“('l-’ <)
exp(z):l+%+%+...+%+... ': (!’+ )
: y : B T Tr 2
l i 22 z4 z2n coshr = 1+%+?++ 3 '+('(J.-l+1)
cosh(z) = +—2T+I+m+6;)—!+m ' : (2p)!
3 5 I‘zan

sinhi(e) = T T
bllll(I)—I+§+§+...+m+

. ala—1) ala—1).(a=n+1) ,
(1+2) =1+ix+ 5 o4+ ol + ...
12 I:i n~l"L‘
In(l+z)=2—-=+——..+(-1)"""—+
2 3 n

Primitives and Integrals

O
O
@)

Given F and f two functions continuous and differentiable over I c R, Fis a primitive of fif : Vx € I, F'(x) = f(x)
If Fis a primitive of f, VA € Ror C, F + Ais a primitive of f.

Fundamental theorem: F and f two functions continuous and differentiable over [a, b] C R, F primitive of f. The area
under the curve f(x), x € [a, b] is written:

b
F(b) — F(a) =ff(x)dx

Let f be a continuous real-value function defined on a cIose‘(I:I interval [a, b]. Let F be the function defined, for all xin [a,
b], by F(x) = foxf(t)dt. Then F is uniformly continuous on [a, b] and differentiable on the open interval (a, b), and
F'(x) = f(x) forall xin (a, b) so F is an antiderivative (or primitive) of f.

The form expressed above is an indefinite form, also written [ f(x)dx. Definite forms is an integral over a defined
interval that returns a number.

Every continuous function has an anti-derivative, actually an infinity of them shifted by a constant.

Integration by parts : f: u()v' (x)dx = [u(x)v(x)]s — f: u' () v(x)dx

Substitution : fab flg(x))dx = ;(%)f(u)Z—If with u = g(x)



o Common primitives

f@ [rwe fx) [ 1)
1 1 x -1 | x
c cXxX 55 —ftan” " —or —col” " —
x2 4a2 a a a
xn+l 1 1 x+a
n n ~1 t —1
X nil (n#-1) 2 i2ax b Vb_a? an (\/b—cﬁ
(b>a?)
1 2x+a
- Injx| (x#0 = In|x?+ax+b
x W (x#0) x2+tax+b " +ax bl
e.\‘ e.\'
. a* a>0 \)7
X “ = 3
a a (a#l) ax+b a V(ax+b)
1 2
Inx xlnx—x (x>0 —_— “vax+b
n . ( ) vax +b a
! In|x —a| ! sin~1 X
x-—a Va2 —x2 ' a
1 1 2
5 - Va2 -x? Sl s S
(x—a) x—a 2 2 a
-1
—umh’Ii
a
1 1 |x—al| JIx[<]a
x2—ag2 2a |x+a| |zl 41X
a
x| > |a|
5 1 ) 1 sin2x Sy -
Cos“ X 5(x+smxcossx):5 x4+ 2 cot~~x xcot™lx +1Iny/1+x2
L | |t (x +”)} inhx hx
nftan( = + = n cos
cosXx 2 4 >
1 ;
- tan X coshx sinhx
Cos=
tanh x In|coshx|
L mn(x ”) othx In|sinh x|
> s i i C S
1+sinx 2 4
sich'x  xsinh~'x—vx2+1
cosh~! x xcosh_lx-\/x-’-—-l
tanh ™' x  xtanh~'x +1Iny/1—x2
coth™'x  xcoth™'x+Iny/x2—1

sinx
.2

sin® x
sinx

P ]
simn-x

Cos X

i (x+ Vx2+a2
n

|al

) = sinh~! =
a

2
X a
2\/.\:2 +a2+ 5 In(x + Va2 +x2)

x+vVx2-a2
In|—— —
a

X
=cosh~! =
a

—COSX
l(x~ i 00w o) 1 . sin2x
3 sinx cosx) = = | J 2

x
ln|l:m§'

—cotx

sinx

1 (x b 4 ) (x
- —cot - = tan
1 —sinx 2 4 "N
1 ; %
an
1+ cosx 2
1 ‘ X
- COl -
1 —cosx 2
tanx —In|cosx|
2
tan” x tanx — x
cotx In|sinx|
A
cot*x —Cotx — Xx
sint'x  xsin'x+/1-x2

I'x  xcos~'x—v1-x2
I'x  xtan'x—Iny1+x2

Cos™

tan

. b ay\? b =
o Calculation of Arclength : s = [* |1+ (E) dx = [ 1+ f'(x)*dx

+2)



Exact and Inexact differentials
o Partial differentiation: Multi-variable functions will be studied usually by looking at how they vary when changing only
one variable at a time:

d
J;f(T« ?/0)

7 (w0, 40) =

O f(xo+h,yo)—f(X0,Y0)

af .
T=T0 a(xo')’o) = }lli% h

af B d '
%(-F(),y{)) = d—yf(zu,!/)}

Y=Yo

o Higher order Partial differentiation : since partial derivatives of a function are also functions of several variables, they
can be differentiated with respect to any variable. For a function of two variables:

or ool o oor 0
ox Oz dx 922’ Oydr Oyox
af oaf f  oof o
— — _—— = — L —— =
Ay drdy dxdy’ dyoy P

o Differentiability: a function f defined on an open set | of R™ ,f is differentiable in | if all its partial derivatives exist and are
continuous.
o Clairaut’s theorem: for a function f defined on an open set | of R? if all the partial derivatives of f exist and are continuous,
9%f  9%f
then: 0xdy 6y6x
o Total differential: a differentiable function (in 2D) has a total differential defined as: df = g—idx + Z—fldy

o In some open domain of a space, a differential form P(x, y)dx + Q(x,y)dy where P and Q are continuous two variable
functions, is an exact differential if it is equal to the total differential of a differentiable function f: df = z—idx + Z—idy

with Z—ﬁ = P(x,y) and g—£ = Q(x,y), inan orthogonal coordinate system.

Partial derivative test: a differential form P(x,y)dx + Q(x,y)dy is an exact differential if and only if Z—i = Z—i.

Changing the order of limits: For a function of two variables f(x,y), we can invert the order of limits if and only if:

((xlin; Sfx,y)=g(y) uniformly) A (}hj)} flx,y) = h(X)))

(llm lim f(x,y) = 11m llm flx,y) = lim f(x,y))
X=X Y=Y

Yo X=X (x.3)=(x0.30)
o Uniform convergence :
(Ve > 0)(36 > 0) (Vx € D,)
(0<ly=wl<é = |f(x,»)—gx)|<e)

Changing the order of limit and integral:
If (f)nen+is @ sequence of Riemann integrable functions defined on a compact interval |, (a close interval in R for example)
which uniformly converge with limit f, then f is Riemann integrable and its integral can be computed as the limit of the

integrals of the fo: [ f = lim [ _ fy

n-oo

Changing the order of integrals:
=  Fubini's theorem : one may switch the order of integration if the double integral yields a finite answer when the
integrand is replaced by its absolute value.

/f:vy (ai9) /(/f:cudy)dz-/y(/fzydz)d if X/ylf(z,y)|d(z,y)<+oo

Weeks 9&10: Fourier and Laplace transforms

oo
o For x(t) a periodic function of period T, and w, = 2?”, r(t) =z(t+T) = Z ayed okt
k=—oc
The (ay) ez are the Fourier coefficients and the series is called the Fourier series.
Vk, @ =7 [ x(t)e ot dt
One can show that all T-periodic functions (and so in particular for regular continuous functions we handle in engineering
most of the time), the expression of Fourier series exist, and converges towards the original function uniformly.

. . . tl()
o Forreal functions, one often uses the relation:  f(z) = — + 2 apcosnz +bysinnz)

n=1



o Parseval equality: X ¥%2|a,|* = %foTlx(t)l2 dt
If a function f has all its Fourier coefficient equal to zero, the function is zero.

o For afunction f that is wholly or piece-wise continuous and integrable (that vanishes at infinity), or in other words that is
integrable, in particular: The following integral form exist and is called the Fourier transform:

F(w) = if:: f(t)e/°tdt and we have f(t)= f:r;o F(w)e/®tdw

o Fourier transform of the derivative of f: F(f")(w) = iﬂ: f'(t)e °tdt = jwF (f)(w)
o For a multi-variable function, it is possible to apply the Fourier transform to one variable only: for a function c(x,t),
we can apply the Fourier transform to the space variable x, leaving the time variable t unchanged:

1 (e .
F.(c(x,t)) = é(w, t) = Ef c(x, t)e /9%dx

o Fora function f: R® - R, within an orthonormal basis:
F(f)(§) = [is f(r)e™"4d>r Where r.§ is the dot product between two vectors.

o The Dirac delta function loosely defined is actually an example of a distribution, it is defined by its integration properties.

o(.r)_{o’ i /OC o(z) de =1

o0, £=10 —0o

o The Fourier transform of the delta function is: F(8§)(w) = if:: S(t)e Jotdt = ie—ijo = i, Yo
1

;fj;oe”“’tdw =F(f=1)

o From the inverse theorem: §(t) = f:'gie”“’tdw =
o For the function f(t) = e/®ot:
F(el@ot) = ifm e J(w-wolt g = i2715 (w — wg) = §(w — wy)
21 )_o 2m 0 0

o Fourier transform of a Gaussian f(t):

2
m<

=——-e 2’ e
\/E F(w) \/(_l e

Laplace Transforms
o The Laplace transform is defined in two ways:

o Unilateral: L[f(t)] = fooo e Stf(t)dt = f(s) (causal system that exists for t>0).

o Bilateral: L[f(t)] = [__ e~ f(t)dt = f(s)
o The Laplace transform is said to be defined in the s-domain, where s is a complex number.
o Properties of the Fourier (X(jw)) and Laplace (X(s)) transforms of a function x(t):

Bilateral Laplace Fourier
Property x(t) X(s) X(jw)
Linearity axy(t) + bxa(t) aX1(s) + bXoa(s) aX1(jw) + bX2(jw)
Time shift x(t — to) e X (s) eI X (jw)
. 1 s 1 jw
Time scale x(at) —X (—) —X [ —
|al a |al a
, o dx(t) . .
Differentiation g sX(s) JwX (Jw)
[¢
Multiply by ¢ 2 (t) 9 ¥(s) E 4 )
HARA ——AlS — = w
Ry ds J dw J
Convolution x1(t) * 2o(t) X1(s) x Xo(s) X1 (jw) x Xa(jw)

o Be careful however, for the unilateral Laplace transform, a limit at the 0 boundary must be considered:

[ee]

LF©1= [ e @de= @1y - (-9) | e e
LIF®O)] = SEIFO)] - £0)



o Convolution: operation on two functions that reflect how the shape of one is modified by the other:
+00 +oo

frg®) = f(Mg(t—1)dr = ft—1g(@)dr

o Laplace transform of common functions :

s cos(b) — asin(b)

cos(at + b)
1 32 g (12
t)y=L " {F(s F(s)=L{f(t
f@® {F(s)} (s)=L{f(®)} _— T
1 st —a
1 e,
s
B i cosh(at) m
€
- b
: |a €% sin(bt) e
t", n=123,... L (s—a)*+¥
’ ids s—a
T(p+1) e cos(bt) T
. p>-1 — (s—a)"+V¥
sPT
b
€% sinh(bt ———
v ;/j o (s—a)* —b2
82
s—a
1 1-3-5---(2n—1) /7 e cosh(bt
1, 1n=12,3,... . ( - )}/ () (s—a)z—b2
ngnts
n!
: a t"e®, n=1,23,...
sin(at) 1 (s — a)n+1
s 1 s
cos(at) 32+—a2 f(ct) ZF (z)
tsin(at) __2& uc(t) =u(t—c) e °s
(32 +a? )2 Heaviside Function s
2. .2 _
t cos(at) ‘9—02 §(t—rc) e
(32 + a2) Dirac Delta Function

Week 10&11: Differential Equations
o The general form of a second order linear ODE is: a,y"" + a,y' + apy = f(x)
o The solution is the sum of a particular solution of the non-homogeneous function, and general solution of the
homogeneous equation.
o Inthe general case for the homogeneous function:

Systematic procedure for the solution of the Example
homogeneous second-order DE

Let the equation be

axy"+a1y' +apy =0 Y'+3y'+2y=0
Let y =e”* be a solution of the DE. Substituting
for
) dy
I — pelX —elX. ! = L —pelX
X W= Y dx &
2,rX d?y 2.rx

and " — rle "o —p2arx

4 dx?2

gives aorr?e’™ +ayre’ +ape’ =0
We can factorise e’ :

e"Y(ayr? +air+ag)=0 e (r2+3r+2)=0
Since e’ # 0. the expression in the bracket must
be zero:
arr?+ar+ap=0 r24+3r+2=0

This is a quadratic in r. It is called the auxiliary
equation of the DE. Its roots are

—a,i\/a|2—4a2a0

2= ri=-1, rp=-2
2a2
Provided that r; and r, are different, the general
solution of the DE is
y=Cye"* +Coel2¥ y=Cie ¥ +Cre*
o The general form of a first order ODE is as follow: p(x)y’ + q(x)y = f(x)
) . . 11 109 4
o The general solution of the non-homogeneous function above is: y((x) = — (—x)f(x)dx where I(x) = elre®™

1(x) 7 p(x)



Partial differential Equations

o

The general formof aPDEis: F(xy,...,: Ty Oy Uy oo s 15)

Tn

N2 02 an -
Uy O Uy O Wiy Oy zqu) =0

129

o Alinear equation is one in which the equation and any boundary or initial conditions do not include any product
of the dependent variables or their derivatives;

o Semi-linear equation: coefficients of the highest derivative are functions of the independent variables only.

o Quasilinear equation: the coefficients of the higher order terms are functions of merely lower-order derivatives
of the dependent variables.

o The superposition principle does not apply to non-linear equations.

Week 12-14 : Probability and Statistics

o Thesetof functions square integrable over aninterval (i.e. [|f (x)|* exists and is finite), often called £Z, is an Hilbert space,
with the inner product:
(f,9) = [ f* () g)dx and [IfII* = {f, f) = [If (0)|*dx
o The common operators discussed in wave mechanics are self-adjoint (position, momentum, most Hamiltonians).
Probability :
o Consider performing N times an experiment that returns events in a set £2 .We can consider an event a, which happens
N, times. The empirical frequency is given by f, (N) = I\IIV—“
When N becomes large and the experiments are done independently from each other (they don’t influence each other),
fo (N) converges to a well defined and finite limit called the event probability:
P(a) = lim f,(N) 20
o From the definition, it is straightforward that (it is what defines a probability function):
o P@)=1andP(®)=0.
o If (4)) is a family of events that are not overlapping (i.e. Vi # j,A; N A; = @): P(U;4;) = X; P (4;)
o Normalization: Y, p; = 1
o Fortwo independent events Aand B, P(A N B) = P(A) X P(B)
o Random variables: If one considers a game of drawing balls, with the probabilities p;, to which is associated not just an
event (a ball with i on it), but a number, such as an amount of money won x;. x; is a variable associated with
arandom event, it is a called a random variable.
o The set {x;,p;} defines the law for the random variable x;. In this case, it is a discrete law.
o  Continuous random variables: a continuous random variable x can take values in an interval [a, b], the
probability density p(x) = 0 defines the law of the random variable: the probability to find a value between
x & x + dx is p(x)dx. Normalization: f: p()dx =1
o Conditional probability:
For two events A and B, the probability that the event B occurs, knowing event A, is given by: P(B/A) = P;i;f)
If A and B are independent, knowing A should not affect the probability of B, and we see that P(B/A) = P(B).
o Average:
We consider a random variable x, with outcome values (x,,p, ) if discrete, and if continuous, x € [a, b] with a probability
density p(x). A function f(x) is also a random variable. We can define its average:
o Yaf(xy,)p, if discrete;
b . )
o fa f(x)p(x)dx if continuous.
o In particular, the average for the random variable x is given by: (x) = f; xp(x)dx
o Standard deviation:
The standard deviation of the random variable is defined as: (Ax)? = 02 = ((x — (x))?)
* Ax (0) is called standard deviation, (Ax)? (¢2) is called variance.
*  Wealso have: 62 = (x?) — (x)?
o The binomial distribution is a discrete probability distribution of the number of successes in a sequence of n independent

experiments, each with a probability of success p or failure 1 - p.
=  For asingle trial, the binomial distribution is a Bernoulli distribution
*  For n trials, the probability of having a certain sequence of outcomes with k successes is: p*(1 — p)™ ¥
= |f we associate a random variable for each trial Xk that is 1 for success, and O for failure, we can also define the
random variable X that is the sum of the variable of each trial: X=X1+ ... + X;,
= The probability to have k successes is P(X = k), which is also the number of configurations that returns X =k. This

is called the Binomial distribution of parameters nand p: P(X = k) = (Z) pk(1 —p)nk



Statistical Physics :

O

Consider a system of Hamiltonian H with eigenvectors [,). An observable 0 with eigenvalues o, and eigenvectors |a),
will have outcomes o,, of probability [{a|y,}|?. The average measure will be: (¢n|0|1/)n) =Y, 0ql{a|P,)|?

The statistical description of the macroscopic system attributes a certain probability p,, of having the system in the state
[,,).We hence have a two-level statistics: (0) =Y. pn<¢n|5|¢n>

One level is linked to the quantum physics that governs nature at the microscopic level. The second one arises from an
impossibility to know exactly the Hamiltonian and other parameters of a macroscopic system of 102 particles: a true
statistical approach.

Fundamental postulate of statistical physics:

For a closed system of fixed energy E (microcanonical ensemble), the microstates are equiprobable.

If W(E) is the number of eigenstates of an Hamiltonian H for which E < E,, < E + SE, we can assign the probability for
1

W(E)

One can construct a new operator called density operator D, as: D = ¥, P, [0 YW,

D is Hermitian, positive and Tr(D) = 1 since the probabilities are normalized. We have: (0) = Tr(D0)

P, can be described as the temporal average of [y, |(t)}|?, i.e. the measure of the overlap of the real wave function
of the system, and the eigenstate |, ).

each eigenstate to be: p,, =

The concept of entropy in thermodynamics is linked to the number of accessible microstates : S = kin(W(E))
Where k is the Boltzmann constant k = 1.380658 x 10723 J.K~!
If we consider two isolated systems of energies E; and E, brought in contact. The total energy E = E; + E is conserved

but E; and E,can vary.
Wi (E1)W3(E—Eq)

gt Wi (EDW, (E-Ep)

o The probability to have the system 1 at energy E; is: p(E;) =

651(51)) — a52(’5—151))
Er g —gea 9,
as

o This probability is peaked for eq where Efq is the energy of system 1 at
E;=E-E;

equilibrium. We can then define: %

5]

For a grand canonical ensemble, the probability of finding the small system 1 in one micro-state of energy E; is
(n)
_ wyE-Ey o
p Lt Wa(EDW, (E~E7)’

_E1 _E1
which can be rewritten as: p = %e kT2 with Z = Y, e kT2 the partition function.

A grand canonical ensemble will allow not only an exchange of energy for a small system with a thermostat, but also an

exchange of matter (atoms, molecules, particles etc...)

W, (E—Ey1, N-Nq)
1 Wy (E{,N)) W (E~E{,N=N7)
1

The probability to have a microstate of energy E; with N; particlesis: p = 5
ELN

With the definition of the differential of multiple variables, the entropy being an exact differential, we can do a very similar

. . . . . a
development as before and obtain a relationship for the temperature and for the chemical potential: u = —T%

We then obtain: p, = Zie‘BEn”N" with @ =Bu and Z; =Y, e Fintaln = 3 oaNz, (B)
G



